Dr. Amit Kumar Pandey

Mobile: +91-9935461305

Email: amitpandey886@gmail.com

Professional Summary

Ph.D. in Biobased Materials Science with extensive experience in polymer synthesis, processing, and characterization. Expertise in developing and analyzing biobased and biodegradable polymers, with a strong focus on polymer performance, degradation, and advanced analytical techniques such as FT-IR, DSC, TGA, WAXS, and SAXS.

Currently a Guest Faculty at Harcourt Butler Technical University, Kanpur, with a solid background in teaching, and research.

Teaching Experience				
22/09/2021 — 31/07/2023	Guest faculty, Department of Chemical Engineering, Harcourt			
	Butler Technical University (HBTU) Kanpur, Uttar Pradesh			
01/08/2024 — Present	Guest faculty, Department of Chemical Engineering, Harcourt			
	Butler Technical University (HBTU) Kanpur, Uttar Pradesh			

Professional Experience

09/2019—12/2019 Postdoctoral Researcher (Temporary), Department of Biobased

Materials Science, Kyoto Institute of Technology, Japan

Education

	Degree	Year	Subjects/Discipline	University/College	% of Marks
1.	Ph.D	2019	Biobased Materials	Kyoto Institute of	N.A.
			Science	Technology, Japan	
2. M.T	M.Tech	ch 2016	Chemical	IIT Guwahati	89.2%
	141.10011		Engineering		
3.	B.Tech.	2014	Chemical	Uttar Pradesh Technical	77.82%
			Engineering	University Lucknow	
4.	12 th	2009	Mathematics	Uttar Pradesh Board	82.6%
5.	10 th	2007	Science	Uttar Pradesh Board	71.7%

Research Experience

• Kyoto Institute of Technology, Japan (Sept, 2016 – Sept, 2019)

Ph.D. candidate; Advisor: Prof. Shinichi Sakurai

Dissertation: Studies on Enhancement in Crystallization Behavior of Poly(lactic acid) by Silk Fibroin Nanodisc

• Indian Institute of Technology Guwahati, Assam (January, 2015 – July, 2016)

M. Tech (Matster of Chemical Engineering) student; Advisor: Prof. Vimal Katiyar

Dissertation: Molecular Dynamics Simulation Study of Biodegradable Polymers/Cellulose Nanocrystals Based Nanocomposites

Research Areas

- 1. Development and characterization of polymer blends and nanocomposites for advanced applications in biomedical materials.
- 2. Processing and performance optimization of biobased and biodegradable polymers, with a focus on material properties relevant to food packaging applications.
- Advanced characterization techniques for polymer blends and nanocomposites, including FT-IR, DSC, TGA, SAXS/WAXS, and other methods to assess material properties and degradation.
- 4. Small- and wide-angle X-ray scattering (SAXS/WAXS) of polymers to study structure-property relationships in polymeric materials, with applications in material functionality.

Skills and Techniques

- **Polymer Processing:** Twin-screw extrusion, Injection molding, Compression molding, Blown film extrusion, with a focus on optimizing material performance.
- Characterization Techniques: SAXS, WAXS, DSC, POM, TEM, FTIR, TGA, and Tensile testing to analyze polymer structure, properties, and degradation, relevant to pharmaceutical and biomedical applications.
- **Software:** Materials Studio for modeling and simulation, with experience in using advanced software for material property prediction and analysis.

Honors/Awards

MEXT Scholarship from Ministry of Education, Culture, Sports, Science and Technology
Japan (April, 2017 – September, 2019).

- JASSO Merit Scholarship from Ministry of Education, Culture, Sports, Science and Technology Japan (October, 2016 March, 2017).
- Best poster award at Polymer Engineering and Science International (PESI) Conference 2019 at Yonezawa, Yamagata, Japan (September, 2019).
- Best presentation award for Young researcher in the annual meeting of the society of Rubber Science and Technology Japan (May, 2019).

Publications

- 1. <u>Amit Kumar Pandey</u>, Hideaki Takagi, Nobutaka Shimizu, Noriyuki Igarashi and Shinichi Sakurai; Enhanced formation of stereocomplex crystallites in Poly(l- lactic acid)/Poly(d-lactic acid) blends by silk fibroin nanodisc, *Polymer* 2021, 229, 124001.
- Amit Kumar Pandey, Vimal Katiyar, Sono Sasaki and Shinichi Sakurai; Accelerated Crystallization of Poly(L-lactic acid) by Silk Fibroin Nanodisc, *Polymer Journal* 2019, 51(11), 1173.
- 3. Amit Kumar Pandey, Vimal Katiyar, Hideaki Takagi, Nobutaka Shimizu, Noriyuki Igarashi, Sono Sasaki and Shinichi Sakurai; Structural Evolution in Isothermal Crystallization Process of Poly(L-lactic acid) Enhanced by Silk Fibroin Nano-Disc, *Materials* 2019, 12(11), 1872.
- Ranvijay Singh, Rajesh Katiyar, <u>Amit Kumar Pandey</u>, S.V.A.R Sastry; Development of a predictive model for determining mechanical properties of nano Al2O3 reinforced adhesive bonded SS304 single lap joint, *Journal of Polymer & Composites* 2022, 10(3), 6689.

Book Chapters

- Amit Kumar Pandey, Pham Thi Ngoc Diep, Rahul Patwa, Vimal Katiyar, Sono Sasaki, Shinichi Sakurai; DSC and SWAXS Studies on the Effects of Silk Nanocrystals on Crystallization of Poly(L-Lactic Acid). *Advances in Sustainable Polymers* Springer Singapore 2020, 321-339.
- 2. <u>Amit Kumar Pandey, Shinichi Sakurai</u>; Recent Developments in the Crystallization of PLLA-Based Blends, Block Copolymers, and Nanocomposites. *Crystallization and Applications* (2021).

Presentations in International Conferences

- Exclusive Stereocomplex Crystallization in Poly(L-lactic acid)/Poly(D-lactic acid) Blends in the Presence of Silk Fibroin Nanodisc, 5th International Symposium on Advances in Sustainable Polymers, Oct 14-18, 2019 at Kyoto, Japan.
- 2. Isothermal crystallization of poly(L-lactic acid)/poly(D-lactic acid) blends induced by silk fibroin nanodisc, **Polymer Engineering and Science International (PESI) Conference 2019,** Sept 4-7, 2019 at Yonezawa, Yamagata, Japan.
- 3. Enhancement in Crystallization of Poly(L-lactic acid) by Silk Nanocrystal as Investigated by Synchrotron SAXS and WAXS, **The International Workshop for East Asian Young Rheologists (IWEAYR-14)**, Jan 23-26, 2019 at Nagoya, Japan.
- 4. Crystallization Kinetics of Silk Nanocrystals Reinforced Poly (L-lactic acid) Nanocomposites, **The International Polymer Conference (IPC2018)**, Dec 4-7, 2018 at Hiroshima, Japan.
- 5. DSC and Simultaneous SAXS/WAXS Studies on Crystallization of Poly (L-Lactic Acid) Based Nanocomposites, 7th Synchrotron Radiation in Polymer Science (SRPS 2018), Sept 4-7, 2018 at Gyeongju, South Korea.
- 6. Effects of a Biobased Filler on the Crystallization Behaviors of Poly (L-lactic Acid), **The Fiber Society's Spring 2018 Conference**, June 12-14, 2018 at Tokyo, Japan.
- 7. Molecular Modeling and Simulation of Biodegradable Polymer Nanocomposites, **IITG-KIT joint on Soft and Biobased Materials**, Aug 3, 2016 at Kyoto Japan.

Professional memberships : Student member of The Society of Polymer Science Japan (SPSJ) (October, 2016 – October 2019).