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MAIN FEATURES

“DEPTH, WATER AREA, VELOCITY AND DISCHARGE
ARE CONSTANT

“ENERGY LINE, CHANNEL BOTTOM AND WATER
SURFACE ALL ARE PARALLEL
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CHEZY’S EQUATION

@ Control volume
I'd

Cross-section

Fig. 3.1 Definition sketch of uniform flow

Momentum Equation: P 4 Wsinf - F - P=M,- M 31



CHEZY'S EQUATION
P =F, and M = M,
W=~AL and F, =7 PL

Since the flow is uniform,

where 7 = average shear stress on the wetted perimeter of length P and v = unit
weight of water. Replacing sin € by S, (= bottom slope), Eq. 3.1 can be written as

Driving Force = Resisting Force

YALS, =7, PL  Or =~ 2 S—~RS 3.2

Expressing the average shear stress 7, as 7, = kp 1,

where &k = a coeflicient which
depends on the nature of the surface and flow parameters, Eq. 3.2 is written as

kp Vi=~ RS, V= C /RS, Chezy formula Year 1769

where C' = fll — a coefficient which depends on the nature of the surface and the
p k

dimensions of C are [LV2 T-1]



CHEZY’S EQUATION

- ;': VE
For pipe flow, the Darcy—Weisbach equationis /h, = f 72
g

where /1, = head loss due to friction in a pipe of diameter [Jand length L, f= Darcy-

Weisbach friction factor. fis found to be a function of the

Reynolds number | Re = E] only.

vV

For rough turbulent flows, fis a function of the
relative roughness (s./[)) and type of roughness and

is independent of the Reynolds number.

For rough boundaries and Re > 10°

1 2 log =114 (Karman-Prandtl equation)

| f D
DARCY-WEISBACH FRICTION FACTOR f

where £_= equivalent sand grain roughness, pipe of diameter [J



HEZY’S EQUATION
for an open channel flow Darcy—Weisbach equation is
2
h, =f i V—
AR 2g

Slope=S; = S, =h;/L =fV?/8Rg

. : . 8
which on rearranging gives IV = ;‘f JR . [h /L

Same as Chezy's Equation |V=CRS, | § C= \;{B g/ f




For rough boundaries and Re > 10° MANNING’S EQUATION

1 2 log =114 (Karman-Prandtl equation)
ﬁ D
| I 11 T TTTT] | I 1 1 I T T 1711 | | L | L L L
0.10 -
f ]
0.01 i T~ <
0006- | L1 1 Ll aaal | L1 1 Lt aaal 1 L1 1 ||||||-
10 10 4R/e 10° 10

Fig. 3.2 Variation of f in fully rough flow



MANNING’S EQUATION

f o (k /R) 13 C— 8g/f

Coc (R /k) /6

In Chezy’s Equation V= C {RS, Put C
V= 1 "7 s Manning’'s Equation
I1

noc (k) Ve

where n = a roughness coefficient known as Manning's n.



MANNING’S EQUATION

1/6
n = —29 For natural streams
21.1
Where d_, is in metres and represents the particle size in which 50 per cent of the bed
1/6
n=—% For coarse grained soil

26

Where d A = size in metres in which 90 per cent of the particles are finer than d, .

shutterstock com - 1516656128
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MANNING’S EQUATION
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Image source: http://people.uwplatt.edu
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Fig. 3.5(a) Typical velocity distribution in a narrow channel, B/y, = 1.0. (Ref. 4)
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MANNING’S EQUATION

oloooo

&/ Dimension ofnis [/ 1/3 T

In Manning's Formula thereisaterm 1/n

1 has the dimension m /3 /s in MKS

In FPS system1 has the dimension (3.28)ft1/3 / s

1486
n

V R2/381/2 In FPS

So 7 1s always constant whichever system of units 1s
used. Only dimension of 1 changes

14
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Table 3.2 Falues of Roughness Cogffictent n

Manning’'s n Rouaghness Coefficient

5. No. Surface Characeristics Range ofn
(@l  Lined chanpels with siraight a bgnment
! Concerte  (a) formed, no Bnish o3-aor7
(B Trmoowel finish g f-aars
(g Float fnish QI35
{dl Centie, good secion OE-0019
(e Cinlte, wavy sectibn 0.E-0072
Z Cioncrete bodom, foat fntsh, sifes as indcated
(a) Dressed siome inmortar OE-0817
{8 Random sione in moriar 0.0 7-0.00
(g Cement rubbie masoory 00200075
(d) Cement-rubie masonry, plastered 00060820
{e! Dy rmbbk [rip-rap) 0.820-0.830
3 Tiie OE-0018
4 Hrick g d-aay
5 Sewers jconcrete, A.C, vigihed-day pipes) o.M2-a015
& Asphalt {1} Smooth LXKy
() Kough OiE
7 Cincrete lined, excavated ook
i) good section g 7-0020
{8) irregular section 08220027
g Laboriory fumessmooth meta bed and gizs or perspex sides 0.0 -0 a1
= Lintimed, non-emodible chammels
! Earth, strrjght and uniform
(1} ciean, recentiy compleied 0006000
{1} clean, after weathering 0.1 E-0875
(g} gravel, uriform section, clean 002208350
(i with short grass, fow weeds 00220033
z Channels with weeds and Brish, socol
{1l dense weeds, high as fow depih a.-0iz
{i5) clean botiom, Brish on sides J.4-008
(b dene weeds or aquertic plants in cbep cennels. 0.0 3035
(i grass, some weeds 00250033
3 FRodk O25 -0 5
& Natual channek
! Smooth patoral earth channel, Fee fom growth, Side omeaiee (0050
Zz Earth channels, considermbly covered with small growth O35
3 Mountain streams in dean lbose cobbles, rivers with variable  0.04-005
section with some vegetation on the banks
4 Rivers with fatrly strajght alignmen( obstrocted by small trees, 0.06-0075
vary betle ander brskh
5 Rivers with trregular alignment and cross-section, covered [N E
with groweh of vingin timber and occasional patches of bushes
and small frees
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11.

111.
V.

V.

V1.

Factors affecting Manning’s n

Surface roughness

Vegetation

Cross section irregularity
[rregular alignment of channels
Silting & scouring

Obstruction

vil. Stage & discharge
viil. Seasonal change

1X.

Suspended material and bed load
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Velocity Distribution Wide channels

1) Velocity Detect Law

dChannels with large aspect ratio B/y, are wide channels
] Flow is considered to be essentially two dimensional
d Velocity distribution is logarithmic

= 1 Y =
=
=]
@
]
g Yo
o
£
Lyw )
E
o
D
.
Bed i 1)
O velocity u —

Fig. 3.3 HEIGEI’U-’ pngﬁ?e in a wide open channel
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Velocity Distribution Wide channels

The velocity « at a height ¥ ghgve the bed in a channel having uniform flow

at a depth y, is given by the velocity-defect law for y/ ¥,>0.15as

u — u:l]ﬂ ¥
u, k Yo

2.3
== ? log,, (f“'ffn}

where ¢, = shear velocity = 7,/ P = /gRS, , R= hydraulic radius, S, = longitu-

dinal slope, and & = Karman constant = (.41 for open channel flows®.
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T LT Velocity Distribution Wide channels

in terms of the average velocity V= 1 f " dy as
Jo'0

Yo
% u
= I —
S
11) Law of wall
u 1 . yu
— =—In—+4,
) k V

*

is found applicable in the inner wall region (y/y, < 0.20). The values of the constants
are found to be k= 0.41 and A_= 5.29 regardless of the Froude number and Reynolds
number of the flow”. Further, there is an overlap zone between the law of the wall
region and the velocity-defect law region.
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Velocity Distribution

For completely rough turbulent flows, the velocity distribution in the wall region
(¥/y, < 0.20) is given by y 1y

—=—1In—+
7] k = A

L -

=

where = = equivalent sand grain roughness. It has been found that £ is a universal

constant irrespective of the roughness size®. Values of & = 0.41 and A = 8.5 are
appropriate.

Channels with small Aspect Ratio

channels with B/y, < 5 can be classified as narrow channels.

20



wrary  Velocity Distribution  Channels with small Aspect Ratio

%T“f ~ Surface velocity
— ' Us 7 a
AN Velocity
Uy r dip
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1EEEI %
Velocity u

Fig. 3.4 l‘iﬁ'.’ﬂfitj’ pmﬁfe in a narrow channel
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Fig. 3.5(a) Iypical velocity distribution in a narrow channel, B/y, = 1.0.
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I= Max. velocity line _V b2

/ u/ um

0.985
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0.950

0.925
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0.850
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0.700
2.0 1.6 1.2 0.8 0.4 0.0
Z/yo

V¥

Fig. 3.5(b) Typical velocity distribution in a rectangular channel with B/y, = 6.0. (Ref.47)
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EQUIVALENT ROUGHNESS

n varies from 0.01 (smooth metal frame) to 0.2 (natural
channels with irregular sections)

Glass n=0.01 Glass n=0.01

Metal n=0.015

Equivalent roughness will be between 0.01 and 0.015

24



EQUIVALENT ROUGHNESS

Horton’s Method of E-:luirnh:nt R(Jllghnfﬁﬁ

PN

A, % / "N

& -8
P.

[

n;

Fig. 3.10 Multi-roughness type perimeter

1

Manning’s Formula Vi — Ri2/3 S iZI_/ 2
n
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EQUIVALENT ROUGHNESS

ret Assume all the mean velocities are same for all sections
and channel slope is also same

Vneq vin,
R2/3 = R2/3

All Vs are same and cancelled

g —

2/3 2/3 2/3
neqP _anl B n. P

2/3 93 T rrrrrrrremsaesae
A A

Slope

R

A
n%ZP
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EQUIVALENT ROUGHNESS
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developed by Horton in 1933 and by Einstein in 1934. However, Eq. 3.26 is popu-
larly known as Horton's formula



=

Bt

vawie v.3 Equations for equivalent roughness coefficient (Ref.10,16)

Investigator 3 Concept

1 Horton (1933), Einstein 4 2/3 Mean velocity is constant
(1934) - FZ(”;-MPI-)} in all subareas.

2 Pavlovskii (1931) -1 1/2 Total resistance force F'is
Muhlhofer (1933) = —Z(nf}f)l sum of subarea resistance
Einstein and Banks (1950) | forces, Z F,

3 Lotter (1932) PR3 Total discharge is sum of

= subarea discharges

(Continued)
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EQUIVALENT ROUGHNESS
Example 3.3 u An earthen trapezoidal channel (n = 0.025) has a bottom width

of 5.0 m, side slopes of 1.5 horizontal: 1 vertical and a uniform flow depth of 1.1 m.
In an economic study to remedy excessive seepage from the canal two proposals, viz
(a) to line the sides only, and (b) to line the bed only are considered. If the lining is
of smooth concrete (n = (.012), determine the equivalent roughness in the above two
cases by using (i) Horton s formula, and by (ii) Paviovskii formula.

Solution Case (a) Lining of the sides only
Here for the bed: 7= 0.025, and P, = 5.0 m.

For the sides: n, = n, = 0.012, and P, = P, = 1.10 x /14 (1.5 *=1.983m

2/3
(i) Equivalent roughness . by Horton's formula: n, = [%UZ (' E)‘

o 5.0 (0.025)"* +1.983x (0.012)** +1.983x (0.012)**| ~ 0085448
e [5.0+1.983+1.983]" 431584

:|E|r3

=0.0198
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EQUIVALENT ROUGHNESS

1/2
(i) Equivalent roughness n_by Pavlovskii formula: n_ = %2 (n E]l
[5.0(0.025)° +1.983x (0.012)* +1.983x (0.012)*] *  0,060796 -
= [5.0+1.983+1.983]"* 299433
Case (b) Lining of the bed only

Here for the bed: 7= 0.012 and P= 5.0 m.

For the sides: n, = n, = 0.025, and P,= P,=1.10 x /1 +1.5)* = 1.983 m

2/3
(i) Equivalent roughness 2 by Horton's formula: 7 = LLUZ [n‘fmﬂ)‘

o 5.0 (0.012)? +1.983x (0.025)** +1.983x (0.025)*2] " 0,079107

- = =0.01833
; (5.0 +1.983+1.983] 4.31584

30



EQUIVALENT ROUGHNESS

172
(i) Equivalent roughness n_by Pavlovskii formula: n_= I%DZ (n E}‘

= 0.01889

[5.0 (0.012)% +1.983x (0.025)* +1.983x (0.025)*] *  0,05656
= =
‘ [5.0+1.983+1.983]" 2.99433
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Felkel (1960)

Krishnamurthy and
Christensen (1972)

Yen (1991)

Concept

Total discharge is sum of
subarea discharges

Logarithmic velocity
distribution over depth y,
for wide channel

Total shear velocity is
weighted sum of subarea
shear velocity




CONVEYANCE AND SECTION FACTOR

Manning's formula and the continuity equation, Q = AV

The discharge () is then givenby Q= 1 AR S
i

= K./S,

where, K = 1 AR?is called the conveyance of the channel and expresses the dis-
n

charge capacity of the channel per unit longitudinal slope.

The term nK = AR is

sometimes called the section factor for uniform-flow computations.

Section Factor Z = nK

33



CONVEYANCE AND SECTION FACTOR

For a given channel, AK**is a function of the depth of flow.

a trapezoidal section of bottom width = B and side slope m horizontal: 1 vertical.
Then,

A= (B+ my)y

P—= (B+ 2y \nf +1)
P (B+my)y

:[B+2y4m“+n

AR — [B‘Fmﬁ J/E — f(B, m,y}

{B+2j’ ,'mz +1]2a‘3

For a given channel, B and m are fixed and AR®® = f(y).

34



YIB

CONVEYANCE AND SECTION FACTOR

06 0.8 1.0 2.0
é=AR3 ] a3

Fig. 3.9 Jariation of ¢ with y/B in trapezoidal channels
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CONVEYANCE AND SECTION FACTOR

For a rectangular section

5/3 . ,5/3 BlOIS(yJS/B
7- 57 Z - B

(B+2y)" } Bm(H Zy)
B

For very wide rectangular channel (B>20y) Z = By®/3

36



CONVEYANCE AND SECTION FACTOR

| T T | | l | | 1 I I I I

20 —m A Shaped Channels
1 [Trapezoidal Channels
s P __{ y with negative side slope]

[TTTr[rro1d
-
S~
A

0.8
0.7
0.6

Q Q

~ ~

S

m=-—0.25
1.0 \
09
0.5 Circular channel
0.4
0.3 _f
* D
y
02 i3
- Circular section
0.15 | | | | | | | | I
0.025 0.05 0.075 0.1 0.15 0.20 0.25 0.30 0.35

AR?3/ B83 forA shaped channels
AR?273/ D83 for circular channels
Fig. 3.12 Variation of AR? in channels of the second kind
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CONVEYANCE AND SECTION FACTOR

[t may be seen that for m > 0, there is only one value B for each

value of ¢, indicating that for m > 0, AR is a single-valued function of y.

top width is either constant or increases with depth.

channels of the first kind

Since AR = % and if 7 and SD are fixed for a channel, the channels of the first
0

kind have a uniqué depth in uniform ﬁnw associated with each disaharge._This depth
is called the normal depth.

The normal depth is designated as y,,

The channels of the first kind thus have one normal depth only.
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CONVEYANCE AND SECTION FACTOR

Channels with a closing top-width can be designated as channels of

the second kind.

Example 3.7 u A 5.0-m wide trapezoidal channel having a side slope of 1.5 hori-
zontal: 1 vertical is laid on a slope of 0.00035. The roughness coefficient n = 0.015. Find
the normal depth for a discharge of 20 nr'’/s through this channel.

Let

¥, = normal depth
Area A=00+15y)y
Wetted perimeter P=35.0423.25 y,

= 5.0+ 3.606 y,

R A/P— (5.0+1.5y) ¥
(5.0 +3.606y;)

The section factor ARER = &
5
(5.0+15y)" %"  20x0.015

= =16.036
(5.04+3.606y,)*"  (0.00035)"

Algebraically, y, can be found from the above equation by the trial-and-error
method. The normal depth is found to be 1.820 m

39



SECOND HYDRAULIC EXPONENT N

K= C,y"

Where C,= a coefficient and V = an exponent called here as the second hydraulic

Example J'I?I Obtain the value N for (a) a wide rectangular channel, and
(b) a triangular channel.

(a) For a Wide Rectangular Channel
Considering unit width, A=y

R=y
1
= ?}/Z{J"’Mg} = Cz.yN
By equating the exponents of yon both sides; V= 3.33

(b) ForaT; ;fangufe:r Channel of Side Slope m Horizontal: 1 Vertical

A=my*’, P=2y/m* +1

4/3

C, By equating the exponents of yon both sides, ;= 5.33.

40



0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 09 1.0 1.1 1.2
Q/Qpand V/Vy for circular channels

Fig. 3.13 Variation of Q/Q,and V/V, in circular channels
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HYDRAULICALLY EFFICIENT CHANNEL SECTION

1 A5/3
N P2/3

Q _ 81/2

For a given area ===  Minimum Perimeter

For a given Perimeter ===  Maximum Area

For maxima or minima we have to take —— of the
parameter = 0 and then go for the secon%lyderivative

So the condition for maximum discharge will be i*_Q =0
ly
d i3
F{A}E’Z ) =0
Or we can write
4 xrP) =0
dy

42



HYDRAULICALLY EFFICIENT CHANNEL SECTION

When slope, roughness coefficient, area of flow are fixed

Then minimum perimeter section will represent
Hydraulically Efficient Section as it conveys the maximum

discharge also called
(a) Rectangular Section Bottom width = Band depth of flow = y

Area of flow A = By= constant
Wetted perimeter P=B+2y A + 2y

If Pis to be minimum with 4 d
= constant,
dP A
d_:__2+2:G Which gives A=2Yy
YT e y.=B/2.B=2yamR = 2

|||-¢3

f— = —

I Be 1
Fig. 3.18 Hj’dmuhcuf{}-' gﬂfcienr rectan‘guiar channel




HYDRAULICALLY EFFICIENT CHANNEL SECTION

\ayz Triangular Section



MAXIMUM DISCHARGE IN A CIRCULAR CHANNEL

W/ eferring to Fig. 3.23, from Eq. (3.33),
the area of flow section

2

_ % (260 —sin26)

and from Eq. (3.34), the wetted perimeter
P = D6
For the maximum discharge, from Eq. (3.49a),

d
%(AS/Pz):O

1.€. SPd—A—2Ad—P:O

do db Fig. 3.23 Circular channel

D’ D’
SDE)?(Z—200529)—2?(29—23in29)D —0

30 — 560 cos 20 +sin 20 =0
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PROPERTIES OF SOME MOST EFFICIENT

CHANNEL SECTIONS

Channel
Shape

Rectangle ;
(half square) 2Y e

Trapezoidal (half
regular hexagon, 5 5

1

m=—

J3
Circular T
(semicircular) P Y em
Triangle (Vertex

2

angle = 90° Vo

Wetted
Perimeter

Hydraulic
Radius

2 y(’.‘”

4 y em

J3

2 yE.’.'H

2 y(.’.‘”

1.091

0.9895

0.500



SECOND HYDRAULIC EXPONENT N

Conveyance K of a channel is function of depth of flow y

Bakhmeteff gave the equation K? = C, yN

Where C,= a coefficient and NV = an exponent called here as the second hydraulic
exponent

first hydraulic exponent M associated with the critical depth.

Example 3'”1 Obtain the value N for (a) a wide rectangular channel, and
(b) a triangular channel.

b) For a Triangular Channel of Side Sl Horizontal: 1 Vertical
(a) For a Wide Rectangular Channel (b) for a Triangu &fA _H;HE'E of Side Gp:'m orizonta ca
Considering unit width, A=y =my’, P=2yJm +1
_ rR=—2__,
k=y 2m’ +1
]' F
=~ 7 (") =Gy 1 w oo
N K =—(my’)’ I Jat =Gy
By equating the exponents of y on both sides; V= 3.33 n 2

N=15.33.
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COMPOUND CHANNELS

Right Flood Plain \

Left Flood Plain | Main Channel

u

nNg

Fig. 3.21 Schematic sketch q}" a mmpﬂund channel

N=15.33.
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COMPOUND CHANNELS

Y

Diagonal
interface

Ay Ym Az
Sub-aread Sub-area A

Sub-area 4,

Fig. 3.30 Channel cross-sectional area division for diagonal interface procedure—Example—3.23
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COMPOUND CHANNELS

Aty =y _ main channel depth of tlow

1
_ = AR2/381/2
Q n

1
Aty=y_+Ay Q.. .. =—AR°S2

N

P increases too much in flood plain than the area A so R reduces

So Q.2 May be smaller than Q because R is now reduced but
physically this is not correct

1

Total ™ H AR2/381/2 QPartia|: Ql + Qz T Q 3

Choose maximum value
50



s TODAY'S DEAL

ASSIGNMENT -2

SOLVE ANY 10 UNSOLVED QUESTIONS FROM
THE CHAPTER : UNIFORM FLOW

LAST DATE: 27" August 2021, FRIDAY

MAIL TO : hhmc2021@gmail.com
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THE END
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