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*Introduction

Fluid mechanics deals with liquids and gases in motion or at rest.

Fluid Mechanics in Daily Life
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FM Videos/Fluid mechanics in everyday life #Applications of Fluid Mechanics.mp4

*The branch of mechanics that

deals with bodies at rest is called

statics,

*While the branch that deals with

bodies in motion is called

dynamics.
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*Introduction

*The subcategory fluid
mechanics is defined as the
science that deals with the
behavior of fluids at rest

(fluid statics) or in motion

(fluid dynamics), and the

"Raju paani bandh karo!"

interaction of fluids with

solids or other fluids at the

boundaries.
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*Introduction

*Fluid mechanics is also
referred to as fluid dynamics
by considering fluids at rest
as a special case of motion

with zero velocity (Fig. 1-1).

FIGURE 1-1 Fluid mechanics deals
with liquids and gases in motion or at
rest.



*Introduction

Fluid mechanics itself is also divided into several categories. The study of

* Hydrodynamics: the motion of fluids that are practically incompressible

(such as liquids, especially water, and gases at low speeds) is usually

referred to as.

Compressibility

A

Incompressible fluid Compressible fluid



*Introduction

Fluid mechanics itself is also divided into several categories. The study of

* A subcategory of hydrodynamics is hydraulics, which deals with liquid flows

in pipes and open channels.




*Introduction

Fluid mechanics itself is also divided into several categories. The

study of

* Gas dynamics deals with the flow of fluids that undergo significant

density changes, such as the flow of gases through nozzles at high

speeds.




*Introduction

Fluid mechanics itself is also divided into several categories. The study
of

* Aerodynamics deals with the flow of gases (especially air) over bodies

such as aircraft, rockets, and automobiles at high or low speeds.
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low pressure)
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*Introduction

Fluid mechanics itself is also divided into several categories. The study of

* Some other specialized categories such as meteorology, oceanography,

and hydrology deal with naturally occurring flows.




*What is a fluid?

*FLUID: is a substance which is capable of flowing

*FLUID: is a substance which deforms
continuously when subjected to
external shearing force.




*What is a fluid?

*ﬁ sydbstance in the liquid or gas phase is referred to as a
uid.

*Distinction between a solid and a fluid is made on the
basis of the substance’s ability to resist an applied shear
(or tangential) stress that tends to change its shape.

*A solid can resist an applied shear stress by deforming,
whereas a fluid deforms continuously under the
influence of shear stress, no matter how small.

*In solids stress is proportional to strain, but in fluids
stress is proportional to strain rate. When a constant
shear force is applied, a solid eventually stops
deforming, at some fixed strain angle, whereas a fluid
never stops deforming and approaches a certain rate of
strain.



*What is a fluid?

*Distinction between solid and fluid?

*Solid: can resist an applied shear by deforming.
Stress is proportional to strain

*Fluid: deforms continuously under applied shear.
Stress is proportional to strain rate

Contact area, Shear stress V
Solid | A \\ : T=FA" Force, F ‘ Fluid
Deformed r— y
F rubber h S ! B F_V
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Shear
strain, o
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*What is a fluid?

*Stress is defined as the
force per unit area.

Normal
to surface *Normal component:
. normal stress
Force acting
A AFonareadA *In a fluid at rest, the
normal stress is called
pressure

> Tangent o
to surface  “Tangential component:

shear stress



*What is a fluid?

*FLUID HAS FOLLOWING CHARACTERISTICS:

1. NO DEFINITE SHAPE: IT CONFORMS THE SHAPE OF A CONTAINING VESSEL

2. EVEN A SMALL AMOUNT OF SHEARING FORCE: CAN CAUSE DEFORMATION
WHICH CONTINUES AS LONG AS FORCE CONTINUES TO BE APPLIED




*What is a fluid?

*A liquid takes the shape of
the container it is in and
forms a free surface in the

Free surface

/ presence of gravity

*A gas expands until it
encounters the walls of the
Gas container and fills the
entire available space.
Gases cannot form a free
surface

*Gas and vapor are often
used as synonymous words



A *What is a fluid?

On a microscopic scale,
pressure is determined
by the interaction of
individual gas
molecules.

(a) (b) ()
solid liquid Vapour/ gas (- ¥

e

Pressure
gage

Intermolecular bonds are strongest in solids and
weakest in gases. One reason is that molecules in
solids are closely packed together, whereas in
gases they are separated by relatively large
distances

Vapour: It is a GAS whose temp. and press are such
that it is very near to liquid state e.g. STEAM



B *What is a fluid?

1. IDEAL Fluid: NO VISCOSITY, NO SURFACE TENSION, INCOMRESSIBLE eg.
WATER AND AIR- USED TO SIMPLIFY MATHEMATICS- NOT IN NATURE

2. REAL Fluid: ALL FLUIID PRESENT IN NATURE




* Fluid is Continuum

A continuous and homogeneous medium/ continuous
distribution of mass within the matter or system
with no empty space/ fluid properties such as
density, viscosity, thermal conductivity, temperature
etc. can be expressed as continuous function of
space and time
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*No-slip condition




*No-slip condition

Uniform
approach
velocity, V

Relative
velocities
of fluid layers

Zero
velocity

at the
surface
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*No-slip condition: A fluid in
direct contact with a solid
" “sticks'* to the surface due to
viscous effects

*Responsible for generation of
wall shear stress t,, surface
drag D= [t, dA, and the
development of the boundary
layer

*The fluid property responsible
for the no-slip condition is
viscosity

* Important boundary condition
in formulating initial boundary
value problem (IBVP) for
analytical and computational
fluid dynamics analysis



*No-slip condition

When a fluid is forced to flow over a curved surface, the
boundary layer can no longer remain attached to the
surface, and at some point it separates from the surface—
a process called flow separation. We emphasize that the
no-slip condition applies everywhere along the surface,
even downstream of the separation point. Flow separation
is discussed in greater detail in Chap. 10.




* A BRIEF HISTORY OF FLUID MECHANICS

Please refer to section 1-3 in the text book

From 283 to 133 BC, they
built a series of pressurized
lead and clay pipelines, up
to 45 km long that operated
at pressures exceeding 1.7
MPa (180 m of head)

Done at the Hellenistic city
of Pergamon in present-day
Turkey.




*Classification of Flows

*We classify flows as a tool in making simplifying
assumptions to the governing partial-differential
equations, which are known as the Navier-
Stokes equations

*Conservation of Mass

d _
2+ V- (pU) =0
*Conservation of Momentum

pN L (U-V)U = —-Vp+pg+ uV>3U



*Viscous vs, Inviscid Regions of Flow

*Regions where frictional
effects are significant are
called viscous regions. T
Thgy are usually close to | Thicid floo
solid surfaces. | region

*Regions where frictional
forces are small 4 e :
compared to inertial or T m———— it TCOION
pressure forces are called 4 ¢
inviscid W Inviscid flow

— region
For inviscid flows: &

0
;;#—F(U\_)U:—\_p%—pg%ﬁ&?{




*Internal ys, External Floy

*Internal flows are

s ameien - dominated by the
=== = =/~ jnfluence of viscosity
— throughout the
flowfield

*For external flows,
viscous effects are
limited to the
boundary layer and
wake.




* Compressible vs, Incompressible Flow

“ A flow is classified as _
incompressible if the density
remains nearly constant.

*Liquid flows are typically
incompressible.

*Gas flows are often
compressible, especially for
high speeds.

*Mach number, Ma = V/c is a
good indicator of whether or
not compressibility effects are
important.

*Ma < 0.3 : Incompressible
*Ma < 1 : Subsonic

*Ma =1: Sonic

*Ma > 1 : Supersonic

*Ma >> 1 : Hypersonic




*Laminar vs. Turbulent Flow
“Laminar: highly ordered T —

fluid motion with smooth == =
streamlines. —_—

“Turbulent: highly Laminar
disordered fluid motion

characterized by velocity
fluctuations and eddies. e ——
*Transitional: a flow that o

contains both laminar and _ Zaa
turbulent regions Transitional

*Reynolds number, Re=
pUL/u is the key -
parameter in determining
whether or not a flow is : :
laminar or turbulent. .
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* Natural (or Unforced) versus Forced Flow

*A fluid flow is said to be natural
or forced, depending on how the
fluid motion is initiated.

*In forced flow, a fluid is forced
to flow over a surface or in a
pipe by external means such as a
pump or a fan.

*In natural flows, any fluid
motion is due to natural means
such as the buoyancy effect,
which manifests itself as the rise
of the warmer (and thus lighter)
fluid and the fall of cooler (and
thus denser) fluid



“Steady vs, Unsteady Flow

*Steady implies no change at a
point with time. Transient
terms inUN-S edquations are

oU _ Jp _

%zero F = Bf =
Unsteady is the opposite of
steady.

*Transient usually describes a
starting, or developing flow.

* Periodic refers to a flow which
oscillates about a mean.

*Unsteady flows may appear
steady if “time-averaged”




* One-, Two-, and Three-Dimensional Flows

*N-S equations are 3D vector equations.
%VelOCity VeCtor) U(X)y)Z) t)= [UX(X)yJZ) t),Uy(X,y,Z, t)}Uz(X)y)Z) t)]

* Lower dimensional flows reduce complexity of analytical and
computational solution

*Change in coordinate system (cylindrical, spherical, etc.) may facilitate
reduction in order.

*Example: for fully-developed pipe flow, velocity V(r) is a function of
radius r and pressure p(z) is a function of distance z along the pipe.

Developing velocity Fully developed
profile, V(r, z) velocity profile, V(r)
- _ /
=

B B T
I”T e ———— -
— e — —p-— -

—> —————— | —

| e 1 —

- ;_ =
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* One-, Two-, and Three-Dimensional Flows

A flow may be approximated as two-dimensional when the aspect ratio is
large and the flow does not change appreciably along the longer
dimension.

For example, the flow of air over a car antenna can be considered two-
dimensional except near its ends since the antenna’s length is much

greater than its diameter, and the airflow hitting the antenna is fairly
uniform

_——




* One-, Two-, and Three-Dimensional Flows

: EXAMPLE 1-1  Axisymmetric Flow over a Bullet

:Cuns.ider a bullet piercing through calm air. Determine if the time-averaged
airflow over the bullet during its flight is one-, two-, or three-dimensional (Fig.

[ |
l—EE’J.
Axis of
SE’H]ﬂ'lEI[l"I'
S[II.UTIIJH It is to be determined whether airflow over a bullet is one-, two-

or three-dimensional.

Assumptions  There are no significant winds and the bullet is not spinning.
:) Analysis  The bullet possesses an axis of symmetry and is therefore an

axisymmetric body. The airflow upstream of the bullet is parallel to this axis,

and we expect the time-averaged airflow to be rotationally symmetric about

-~ - F";IU.HE 1-22 the axis—such flows are said to be axisymmetric. The velocity in this case
Axisymmetric flow over a bullel.  ariee yith axial distance z and radial distance r, but not with angle .

Therefore, the time-averaged airflow over the bullet is two-dimensional.
Discussion While the time-averaged airflow is axisymmetric, the instanta-

neous airflow is not, as illustrated in Fig. 1-19.



*System and Control Volume

* A system is defined as a
quantity of matter or a region
in space chosen for study.

Moving
/ boundary

L

* A closed system (known as a
control mass) consists of a
fixed amount of mass.

Fixed

boundary * An open system, or control
. volume, is a properly selected
maginary q .
boundary — Real boundary region in space. It usually

=~
-
—_

encloses a device that
involves mass flow such as
a compressor, turbine, or
nozzle.

|
|

| [
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(a nozzle) {

|

|
| e
| Sz

o
| _==

(a) A control volume (CV) with real and (b) A control volume (CV) with fixed and
imaginary boundaries moving boundaries




*System and Control Yolume

*In general, any arbitrary region in space can be selected as a
control volume. There are no concrete rules for the selection
of control volumes, but the proper choice certainly makes the
analysis much easier.

*We'll discuss control volumes in more detail in Chapter 6.



*Dimensions and Units

Force Units

a=1mis*>
_I'.I'I:lk_g —-F:JN

a=1fiss?
m=232.174 |bm pe—————————f- = | |hf

FIGURE 1-27

The definition of the force units.

We call a mass of 32.174 [bm 1 slug



*Dimensions and Units

BWeight W is a force. It is the gravitational force
applied to a body, and its magnitude is
determined from Newton’s second law,

W=mg (N)
where m is the mass ot the body, and ¢ is the
local gravitational acceleration (g is 9.807 m/s2
or 32.174 ft/s2 at sea level and 45" latitude).

BThe weight of a unit volume of a substance is
called the specific weight y and is determined from
v= pg, Where p is density.



*Dimensions and Units

mWork, which is a form of energy, can simply be defined as
force times distance; therefore, it has the unit “newton-
meter (N . m),” which is called a joule (J). That is,

II=1M-m

BA more common unit for energy in Sl is the kilojoule (1 kJ
= 103 J). In the English system, the energy unit is the Btu
(British thermal unit), which is defined as the energy
required to raise the temperature of 1 lbm of water at
68°F by 1°F.

HMIn the metric system, the amount of energy needed to
raise the temperature of 1 g of water at 14.5°Cby 1°C is
defined as 1 calorie (cal), and 1 cal =4.1868 J. The
magnitudes of the kilojoule and Btu are almost identical (1
Btu = 1.0551 kJ).



*Dimensions and Units

* Dimensional homogeneity is a valuable tool in checking for errors. Make
sure every term in an equation has the same units.

: EXAMPLE 1-2 Spotting Errors from Unit Inconsistencies

: While solving a problem, a person ended up with the following equation at
some stage:

|
| E =25k + 7Tklkg
|

m where E is the total energy and has the unit of kilojoules. Determine how to

®m correct the error and discuss what may have caused it.

|
SOLUTION  During an analysis, a relation with inconsistent units is obtained.
A correction is to be found, and the probable cause of the error is to be
determined.
Analysis  The two terms on the right-hand side do not have the same units,
and therefore they cannot be added to obtain the total energy. Multiplying
the last term by mass will eliminate the kilograms in the denominator, and
the whole equation will become dimensionally homogeneous; that is, every
term in the equation will have the same unit.
Discussion  Obwviously this error was caused by forgetting to multiply the last
term by mass at an earlier stage.



*Dimensions and Units

*Unity conversion ratios are helpful in converting units. Use them.

* All nonprimary units (secondary units) can be formed by
combinations of primary units. Force units, for example, can be
expressed as

fi
N = kg% and 1bf = 32.174 lbm —
5

5;2

They can also be expressed more conveniently as unity conversion ratios as

M |t

—— =1 and J 5= 1
kg - m/fs 32174 1bm - fifs




EXAMPLE 1-4 The Weight of One Pound-Mass

Using unity conversion ratios, show that 1.00 lbm weighs 1.00 |bf on earth
(Fig. 1-33).

Solution A mass of 1.00 Ibm is subjected to standard earth gravity. lis
weight in |bf is to be determined.

Assumptions  Standard sea-level conditions are assumed.

Properties The gravitational constant is g= 32.174 ft/s=.

Analysis  We apply Mewton's second law to calculate the weight (force) that
corresponds to the known mass and acceleration. The weight of any object is
equal to its mass times the local value of gravitational acceleration. Thus,

1 Ibf
W= mg = (1.00 lbm)(32.174 ft.-"r;E]( 2) = 1.0} Ibf
32.174 1bm - fi/s

Discussion  Wass is the same regardless of its location. However, on some
other planet with a different value of gravitational acceleration, the weight of

1 Ibrm would differ from that calculated here,



* m MATHEMATICAL MODELING
OF ENGINEERING PROBLEMS

*An engineering device or process can be studied either
* experimentally (testing and taking measurements)

Advantage : deal with the actual physical system, and the desired
quantity is determined by measurement, within the limits of
experimental error.

Drawback: approach is expensive, time-consuming, and often

impgactica . Besides, the system we are studying may not even
exist.

*analytically (by analysis or calculations).
Advantage : fast and inexpensive

Drawback: the results obtained are subject to the accuracy of the

assulmptions, approximations, and idealizations made in the
analysis.

*In engineering studies, often a good compromise is
reached by reducing the choices to just a few by
analysis, and then verifying the findings experimentally.



* MATHEMATICAL MODELING OF ENGINEERING PROBLEMS

Physical problem
Identify
lmportant
variables Make
reasonable
assumptions and
Apply approximations
relevant
physical laws
¥
A differential equation
Apply
applicable Apply
Sl.'.lll.'I.III.D:I'.I bﬂuﬂdm
technique and initial
conditions
¥

Solution of the problem

FIGURE 1-35
Mathematical modeling of physical
problems.



* MATHEMATICAL MODELING OF ENGINEERING PROBLEMS

*The study of physical phenomena involves two
important steps.

*In the first step, all the variables that affect the
phenomena are identified, reasonable assumptions
and approximations are made, and the
interdependence of these variables is studied. The
relevant physical laws and principles are invoked, and
the problem is formulated mathematically. The
equation itselfis very instructive as it shows the
degree of dependence of some variables on others,
and the relative importance of various terms.

*In the second step the problem is solved using an
appropriate approach, and the results are interpreted.



*PROBLEM-SOLVING TECHNIQUE

*using a step-by-step
approach, an engineer
can reduce the
solution of a
complicated problem
into the solution of a
series of simple
problems.

SOLUTION

v I
A 7
L =
[l |
7
 H

PROBLEM

FIGURE 1-36

A step-by-step approach can greatly
simplify problem solving.



*PROBLEM-SOLVING TECHNIQUE

*Step 1: Problem Statement

*Step 2: Schematic

*Step 3: Assumptions and Approximations
*Step 4: Physical Laws

*Step 5: Properties

*Step 6: Calculations

*Step 7: Reasoning, Verification, and Discussion



* Reasoning, Verification, and Discussion

Before streamlining

—'@
"o

- T - @

Unreasonable! After streamlining
e

%?
O 07

FIGURE 1-38

The results obtained from an
engineering analysis must be checked
for reasonableness.



* ENGINEERING SOFTWARE PACKAGES

*Engineering Equation Solver (EES) is a program that solves
systems of linear or nonlinear algebraic or differential
equations numerically.

*FLUENT is a computational fluid dynamics (CFD) code widely
used for flow-modeling applications.

Please refer to section 1-9 in the text book.



* Accuracy, Precision, and Significant Digits

Engineers must be aware of three principals that govern the proper
use of numbers.

1. Accuracy error : Value of one reading minus the true value.
Closeness of the average reading to the true value. Generally
associated with repeatable, fixed errors.

2. Precision error : Value of one reading minus the average of
readings. Is a measure of the fineness of resolution and
repeatability of the instrument. Generally associated with random
errors.

3. Significant digits : Digits that are relevant and meaningful.
When performing calculations, the final result is only as precise as
the least precise parameter in the problem. When the number of
significant digits is unknown, the accepted standard is 3. Use 3 in
all homework and exams.



* Accuracy, Precision, and Significant Digits

* A measurement or calculation can be very
precise without being very accurate, and vice
versa. For example, suppose the true value of
wind speed is 25.00 m/s. Two anemometers A
and B take five wind speed readings each:
Anemometer A: 25.50, 25.69, 25.52, 25.58, and
25.61 m/s. Average of all readings = 25.58 m/s.
Anemometer B: 26.3, 24.5, 23.9, 26.8, and 23.6
m/s. Average of all readings = 25.02 m/s.



* Accuracy, Precision, and Significant Digits

In engineering calculations, the supplied information is
not known to more than a certain number of significant
digits, usually three digits.

Glven: Volume: V=375L
DPensity: pr=0.8453 ke/L

(3 significant digits)
: : Also, 3,75 0.845=7316875
[lustration of accuracy versus
precision. Shooter A is more precise,
but less accurate, while shooter B is
more accurate, but less precise.

Rounding to 3 significant digits:
m=317 kg



Volume flow rater W=

EXAMPLE 1—-& Significant Digits and Volume Flow Rate

Jennifer is conducting an experiment that uses cooling water from a garden
hose. In order to calculate the volume flow rate of water through the hose,
she times how long it takes to fill a container (Fig. 1-42). The wolume of
water collected is W = 1.1 gal in time pericod At = 45.62 s, as measured
with a stopwatch. Calculate the volume flow rate of water through the hose

in units of cubic Mmeters per minute.

SOLUTION Volume flow rate is to be determined from measurements of vol-
ume and time period.

Asspmpiions 1 Jennifer recorded her measurements properly, such that the
volume measurement is precise to two significant digits while the time
period is precise to four significant digits. 2 MNo water is lost due to splash-
ing out of the container.

Analysis Volume flow rate v is wvolume displaced per unit time and is
expressad as

- AWV
M

Substituting the measured wvalues, the wvolume flow rate is determined to be

1.1 gal /3785 > 107 n13:] (6[5'5:

— 15 1r—_1- _-'l..r =
45.62 s 1 gal w1 i

h

1 min



Hosa

Container

FIGURE 1-42

Schematic for Example 1-6 for the
measurement of volume flow rate.

Discussion  The final result is listed to two significant digits since we can-
not be confident of any more precision than that. If this were an intermedi-
ate step in subsequent calculations, a few extra digits would be carried along
to avoid accumulated round-off error. In such a case, the volume flow rate
would be written as V = 5.4750 % 10-*m¥*min. Based on the given infor-
mation, we cannot say anything about the accuracy of our result, since we
have no information about systematic errors in either the volume measure-
ment or the time measurement.

Also keep in mind that good precision does not guarantes good accuracy.
For example, if the batteries in the stopwatch were weak, its accuracy could
be quite poor, yet the readout would still be displayed to four significant dig-
its of precision.

In common practice, precision is often associated with resolution, which is
a measure of how finely the instrument can report the measurement. For
example, a digital voltmeter with five digits on its display is said to be more



* Accuracy, Precision, and Significant Digits

Exact time span=4562345] ... 5 FIE"_IHE 1-43 _ o _
An instrument with many digits ol

; resolution (stopwatch ¢) may be less
TIMERAM TIMEXAM accurate than an instrument with few
44180 45 624l -:jllgll?:- of resolution (stopwatch a).
What can you say about stopwatches b
(@) (B) and d?

precise than a digital voltmeter with only three digits. However, the number
of displayed digits has nothing to do with the overall accuracy of the mea-
surement. An instrument can be very precise without being very accurate
when there are significant bias errors. Likewise, an instrument with very few
displayed digits can be more accurate than one with many digits (Fig.
1-43).



*Summary

In this chapter some basic concepts of fluid mechanics are introduced
and discussed.

* A substance in the liquid or gas phase is referred to as a fluid. Fluid
mechanics is the science that deals with the behavior of fluids at
rest or in motion and the interaction of fluids with solids or other
fluids at the boundaries.

“The flow of an unbounded fluid over a surface is external flow, and
the flow in a pipe or duct is internal flow if the fluid is completely
bounded by solid surfaces.

* A fluid flow is classified as being compressible or incompressible,
depending on the density variation of the fluid during flow. The
densities of liquids are essentially constant, and thus the flow of
liquids is typically incompressible.

*The term steady implies no change with time. The opposite of
steady is unsteady, or transient.

*The term uniform implies no change with location over a specified
region.

* A flow is said to be one-dimensional when the velocity changes in
one dimension only.



*Summary

* A fluid in direct contact with a solid surface sticks to the surface
and there is no slip. This is known as the no-slip condition, which
leads to the formation of boundary layers along solid surfaces.

* A system of fixed mass is called a closed system, and a system that
involves mass transfer across its boundaries is called an open
system or control volume. A large number of engineering problems
involve mass flow in and out of a system and are therefore modeled
as control volumes.

*In engineering calculations, it is important to pay particular
attention to the units of the quantities to avoid errors caused by
inconsistent units, and to follow a systematic approach.

*|t is also important to recognize that the information given is not
known to more than a certain number of significant digits, and the
Elesutlts obtained cannot possibly be accurate to more significant

igits.
The information given on dimensions and units; problem-solving

technique; and accuracy, precision, and significant digits will be
used throughout the entire text.



Y. NAKAYAMA

2.2.1 Absolute system of units oo e o

MKS system of units

This is the system of units where the metre (m) 1s used for the unmit of length,
kilogram (kg) for the unit of mass, and second (s) for the unit of time as the
base units.

CGS system of units
This is the system of units where the centimetre (cm) is used for length,
gram (g) for mass, and second (s) for time as the base units.

international system of units (5i)

SI, the abbreviation of La Systeme International d’Unites, is the system
developed from the MKS system of units. It is a consistent and reasonable
system of units which makes it a rule to adopt only one unit for each of
the various quantities used in such fields as science, education and
industry.

There are seven fundamental SI units, namely: metre (m) for length,
kilogram (kg) for mass, second (s) for time, ampere (A) for electric
current, kelvin (K) for thermodynamic temperature, mole (mol) for mass
quantity and candela (cd) for intensity of light. Derived units consist of
these units.



Table 2.1 Dimensions and units

Y. NAKAYAMA
Former Professor, Tokai University, Japan

Quantity Absolute system of units

o B ¥ Units
Length | 0 0 m
Mass 0 1 0 kg
Time 0 0 1 5
Velocity | 0 —1 m/s
Acceleration | 0 -2 m/s*
Density -3 1 ] kg/m’
Force I I -2 N=kgm/s’
Pressure, stress ~1 | =2 Pa=N/m’
Energy, work 2 1 2 ]
Viscosity -1 1 —1 Pas
Kinematic viscosity 2 0 —1 m’ /s




*Dimensions and Units

*Any physical quantity can = E
be characterized by e eoven fund R
d]menS]OnS. | _'I-'J ,:-e..'.-",H LII'I-.--EII'I'IEI.'I'[-:'I |._-_-I’ !}I“II:I'I-:'IFJ- J
5 : . dimensions and their units in 51
The magnitudes assigned Dimension Unit
to dimensions are called
. Length meter (m)
%un.]t& . . Mass kilogram (kg)
Primary dimensions (or Time second (s)
fundamental dimensions) Temperature kelvin (K)
include: mass m, length L, E'Eﬂt“iﬂ?"lf_ﬂm amﬁ:jerle iﬁﬂ
time t, and temperature T, ot ot e candeia ic
etc. Amount of matter male (mol)

By General Conference of Weights and
Measures



*Dimensions and Units

*Secondary dimensions (derived dimensions) can be
expressed in terms of primary dimensions and include:
velocity V, energy E, and volume V.

*Unit systems include English system and the metric Sl
(International System). We'll use both.



*Dimensions and Units

Based on the notational scheme introduced in 1967,

*The degree symbol was officially dropped from the absolute
temperature unit,

* All unit names were to be written without capitalization even if they
were derived from proper names (Table 1-1).

*However, the abbreviation of a unit was to be capitalized if the unit
was derived from a proper name. For example, the Sl unit of force,
which is named after Sir Isaac Newton (1647-1723), is newton (not
Newton), and it is abbreviated as N.

* Also, the full name of a unit may be pluralized, but its abbreviation
cannot. For example, the length of an object can be 5 m or 5 meters,
not 5 ms or 5 meter.

*Finally, no period is to be used in unit abbreviations unless they
appear at the end of a sentence. For example, the proper
abbreviation of meter is m (not m.).



*Dimensions and Units

Some S| and English Units

*In SI, the units of mass, length, and time are the kilogram (kg),
meter (m), and second (s), respectively. The respective units
in the English system are the pound-mass (Ilbm), foot (ft), and
second (s).

| Ibm = 0.45359 kg
I ft = 0.3048 m



2.3 Density, specific gravity and specific volume

The mass per unit volume of material is called the density, which is
generally expressed by the symbol p. The density of a gas changes according
to the pressure, but that of a liquid may be considered unchangeable in
general. The units of density are kg/m’® (SI). The density of water at 4°C
and 1atm (101 325 Pa, standard atmospheric pressure; see Section 3.1.1) is
1000 kg/m>.

The ratio of the density of a material p to the density of water p, is called
the specific gravity, which is expressed by the symbol s:

5= p/p. (2.2)

The reciprocal of density, i.e. the volume per unit mass, is called the specific
volume, which is generally expressed by the symbol v

v=1/p (m’/kg) (2.3)

Values for the density p of water and air under standard atmospheric
pressure are given in Table 2.2.

Table 2.2 Density of water and air (standard atmospheric pressure)

Temperature ("C) 0 10 15 20 40 60 80 100

p(kg/m’) Water 999.8 9997 999.1 9982 9922 9832 971.8 9584
Air 1293 1.247 1226 1.205 1.128 1.060 1.000 0.9464

Y. NAKAYAMA
Former Professor, Tokai University, Japan
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Former Professor, Tokai University, Japan

FLUIDS MAY HAVE SAME VISCOSITY BUT DIFFERENT DENSITY



2.5 Surface tension

The surface of a liquid is apt to shrink, and its free surface is in such a state
where each section pulls another as if an elastic film is being stretched. The
tensile strength per unit length of assumed section on the free surface is called
the surface tension. Surface tensions of various kinds of liquid are given in
Table 2.4.

As shown in Fig. 2.5, a dewdrop appearing on a plant leaf is spherical in
shape. This is also because of the tendency to shrink due to surface tension.
Consequently its internal pressure is higher than its peripheral pressure.
Putting d as the diameter of the liquid drop, T as the surface tension, and p as
the increase 1in internal pressure, the following equation is obtained owing
to the balance of forces as shown in Fig. 2.6:

nd
adT = po
or
Ap=4T/d (2.7)

The same applies to the case of small bubbles in a liquid.

Table 2.4 Surface tension of liquid (20°C)

Liguid Surface liquid N/m
Water Air 0.0728
Mercury Air 0.476
Mercury Water 0.373

Methyl alcohol Air 0.023

Y. NAKAYAMA
Former Professor, Tokai University, Japan
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Y. NAKAYAMA
Former Professor, Tokai University, Japan

or

b — 4T cos

(2.8)

Fig. 2.6 Balance between the pressure increase within a liquid drop and the surface tension



Y. NAKAYAMA

2.6 Compressibility e oy

As shown in Fig. 2.9, assume that fluid of volume V at pressure p decreased
its volume by AV due to the further increase in pressure by Ap. In this case,
since the cubic dilatation of the fluid is AV/V, the bulk modulus K is

expressed by the following equation:

——f __yp2t (2.10)

Its reciprocal f
B=1/K (2.11)

is called the compressibility, whose value directly indicates how compressible
the fluid is. For water of normal temperature/pressure K = 2.06 x 10’ Pa,
and for air K = 1.4 x 10° Pa assuming adiabatic change. In the case of water,
f =485 x 107" 1/Pa, and shrinks only by approximately 0.005% even if the
atmospheric pressure is increased by 1 atm.

Compressible and Incompressible flows

p.. HEES

Ins gt e Muad
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*Some Simple Flows

*Flow between a fixed and a moving plate

Fluid in contact with the plate has the same velocity as the
plate

u = x-direction component of velocity

Moving plate




*Some Simple Flows

*Flow through a long, straight pipe

Fluid in contact with the pipe wall has the same velocity as
the wall

u = x-direction component of velocity




*Fluid Deformation

*Flow between a fixed and a moving plate

*Force causes plate to move with velocity V and the fluid
deforms continuously.

Moving plate




“Fluid Deformation

Shear stress on the plate is proportional oo
to deformation rate of the fluid

_oL 5= O da oV Y
oy Y gt oy %

oo




*Shear in Different Fluids

*Shear-stress relations for
different types
of fluids

*Newtonian fluids: linear
relationship

*Slope of line (coefficient of

proportionality) is “viscosity” *

dv

T oC ——
dy
dv

T=U—

dy

Bingham plastic
Shear-thinning

Newtonian fluid

Shear-thickening




Non-Newtonian fluid

Shear stress, ¢

Velocity gradient, du/dy

Fig. 2.4 Rheological diagram






*Viscosity

* Newton’s Law of Viscosity ; — ﬂd_V

dy

.
* Viscosity A= v/ dy

2
m/s/m mp2 K 4 >

* Water (@ 20°C) o
* u=1x103 N-s/m? -
* Air (@ 20°C) Y

* 11 =1.8x105 N-s/m? 4
* Kinematic viscosity V=

D IR




“Flow between 2 plates

Force is same on top du du

N=H | =H | =72
and bottom dy 1 dy 2
Fl=nA=r0A=F Thus, slope of velocity
_A profile is constant and
A=A velocity profile is a st. line
4 11=172

Moving plate




*Flow between 2 plates

Shear stress anywhere _du vV

between plates T=H d_y =H B

1 =0.1N-s/m?(SAE30@38°C) ,_ (01N -s/m )(3m/s)
V=3m/s 02m

Y B=0.02m —15N /m?

Moving plate




“Flow between 2 plates

*2 different coordinate systems




*Given /—\
| - £

* Rotation rate, » = 1500 rpm < §
*d=6cm " Pipe
*[ =40 cm o
*D = 6.02 cm <r/ | |_——Oil film
*5G,;, =0.88
¢
" Voir = 0.003 mz/% A— Cylinder
*Find: Torque and PoEeXamI:
required to turn the bearing Ny ¥
at the indicated speed. 1



| ——Pipe

| | —Cylinder

* Assume: Linear velocity profile in oil film %"/O”ﬁ'm

ShearStress 7 = yd—v 2 ’
dy " (D-d)/2
(é’g *1500)(0 06/2)
= (0.88*998*0.003) —124KkN / m?
(0.0002) /2
d..d
TorqueM—(Zm )
*Example: cont,
— (27*124, 000*026*0 4)@ 281N -m |

Power P = M = 281*157.1=44100N - m/s + 44.1kW |




*Assume linear velocity profile: dV/dy=V/y=ar/y
*Find shear stress




*Kinematics of Flow

A. KINEMATICS OF FLOW

» 5.1 INTRODUCTION

Kinematics i1s defined as that branch of science which deals with motion of particles without
considering the forces causing the motion. The velocity at any point in a flow field at any time is
studied in this branch of fluid mechanics. Once the velocity is known, then the pressure distribution
and hence forces acting on the fluid can be determined. In this chapter, the methods of determining
velocity and acceleration are discussed.



*Kinematics of Flow

» 5.3 TYPES OF FLUID FLOW

The fluid flow is classified as :

(i) Steady and unsteady flows ;

(ii) Uniform and non-uniform flows ;
(iif) Laminar and turbulent flows ;
(iv) Compressible and incompressible flows ;
(v) Rotational and irrotational flows ; and
(vi) One, two and three-dimensional flows.
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5.3.1 Steady and Unsteady Flows. Steady flow is defined as that type of flow in which the fluid
characteristics like velocity, pressure, density, etc., at a point do not change with time. Thus for
steady flow, mathematically, we have

(3., o), (),
ot for¥or o ot t

where (xg, ¥p, Zp) 18 a fixed point in fluid field.
Unsteady flow is that type of flow, in which the velocity, pressure or density at a point changes with

respect to time. Thus, mathematically, for unsteady flow

(5., o (%)
3t - # 0, 3 # 0 etc.

Xns ¥+ 2o
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o | R

5.3.2 Uniform and Non-uniform Flows. Uniform flow is defined as that type of flow in
which the velocity at any given time does not change with respect to space (i.e., length of direction of
the flow). Mathematically, for uniform flow

(B_VJ =10
G5 /¢ = consmnt

where dV = Change of velocity
ds = Length of flow in the direction §.
Non-uniform flow is that type of flow in which the velocity at any given time changes with respect
to space. Thus, mathematically, for non-uniform flow

(a_VJ #0.
aj = constant
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5.3.3 Laminar and Turbulent Flows. Laminar flow is defined as that type of flow in which
the fluid particles move along well-defined paths or stream line and all the stream-lines are straight and
parallel. Thus the particles move in laminas or layers gliding smoothly over the adjacent layer. This
type of flow is also called stream-line flow or viscous flow.

Turbulent flow is that type of flow in which the fluid particles move in a zig-zag way. Due to the
movement of fluid particles in a zig-zag way, the eddies formation takes place which are responsible

VD
for high energy loss. For a pipe flow, the type of flow is determined by a non-dimensional number—
Vv

called the Reynold number,
where D = Diameter of pipe

V = Mean velocity of flow in pipe
and v = Kinematic viscosity of fluid.

If the Reynold number is less than 2000, the flow is called laminar. If the Reynold number is more
than 4000, it is called turbulent flow. If the Reynold number lies between 2000 and 4000, the flow may
be laminar or turbulent.
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(a) (b)
Fig. 4.4 Smoke from a chimney

Fig. 4.5 Reynolds’ experiment’
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DN Reynolds number
-

{a) Laminar flow
vd vd . : . .
Re = pT = (v 1s the kinematic viscosity)
(b) Turbulent flow
:-E SRR
(c) Turbulent flow (observed by electric spark)
Fig. 4.6 Reynolds' sketch of transition from laminar flow to turbulent flow
3
>
3
(a) Laminar flow (b) Turbulent flow

Fig. 4.7 Water flowing from a faucet
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5.3.4 Compressible and Incompressible Flows. Compressible flow is that type of flow in
which the density of the fluid changes from point to point or in other words the density (p) is not
constant for the fluid. Thus, mathematically, for compressible flow
p # Constant
Incompressible flow is that type of flow in which the density is constant for the fluid flow. Liquids
are generally incompressible while gases are compressible. Mathematically, for incompressible flow

p = Constant,



*Kinematics of Flow

5.3.5 Rotational and Irrotational Flows. Rotational flow is that type of flow in which the
fluid particles while flowing along stream-lines, also rotate about their own axis. And if the fluid
particles while flowing along stream-lines, do not rotate about their own axis then that type of flow is

called irrotational flow.

Fluid particles running through a narrow channel flow, while undergoing
deformation and rotation, are shown in Fig. 4.8.

Deformation and rotation of fluid particles running through a narrowing channel



*Kinematics of Flow

5.3.6 One-, Two- and Three-Dimensional Flows. One-dimensional flow is that type of
flow in which the flow parameter such as velocity is a function of time and one space co-ordinate only,
say x. For a steady one-dimensional flow, the velocity is a function of one-space-co-ordinate only. The
variation of velocities in other two mutually perpendicular directions is assumed negligible. Hence
mathematically, for one-dimensional flow

u=fix),v=0and w=10
where u, v and w are velocity components in x, y and z directions respectively.

Two-dimensional flow is that type of flow in which the velocity is a function of time and two
rectangular space co-ordinates say x and y. For a steady two-dimensional flow the velocity is a function
of two space co-ordinates only. The variation of velocity in the third direction is negligible. Thus,
mathematically for two-dimensional flow

u=fi(x,y), v=_rlx,y) and w= 0.

Three-dimensional flow is that type of flow in which the velocity is a function of time and three
mutually perpendicular directions. But for a steady three-dimensional flow the fluid parameters are
functions of three space co-ordinates (x, y and z) only. Thus, mathematically, for three-dimensional
flow

u=f(x, v, 2),v=rIkxy 2) and w = fi(x, y, 2).
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P P A %
. Llirrrsris,
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R e
==
I
A, o7 b
(a) One dimensional flow (b) Two dimensional fiow
o, ¥ o3 e RIS A=
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» 5.4 RATE OF FLOW OR DISCHARGE (Q)

It is defined as the quantity of a fluid flowing per second through a section of a pipe or a channel.
For an incompressible fluid (or liquid) the rate of flow or discharge is expressed as the volume of fluid
flowing across the section per second. For compressible fluids, the rate of flow is usually expressed as
the weight of fluid flowing across the section. Thus

(i) For liquids the units of Q are m>/s or litres/s
(ii) For gases the units of Q is kgf/s or Newton/s
Consider a liquid flowing through a pipe in which
A = Cross-sectional area of pipe
V = Average velocity of fluid across the section
Then discharge Q=AxV. (5.1)
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» 5.5 CONTINUITY EQUATION

The equation based on the principle of conservation of mass is called continuity equation. Thus for
a fluid flowing through the pipe at all the cross-section, the quantity of fluid per second is constant.
Consider two cross-sections of a pipe as shown in Fig. 5.1.

Let V, = Average velocity at cross-section 1-1
p, = Density at section 1-1
A; = Area of pipe at section 1-1

and V,, p,, A, are corresponding values at section, 2-2. ® @
Then rate of flow at section 1-1= p,A,V, [ ,,,,,,,,,quu
Rate of flow at section 2-2 = P,V DIRECTION /,' . .’
According to law of conservation of mass OF FLOW
Rate of flow at section 1-1 = Rate of flow at section 2-2
or P1AV) = P2AV, ~(3.2)
Equation (5.2) is applicable to the compressible as well as incom- Fig. 5.1 Fluid flowing through
pressible fluids and is called Continuity Equation. If the fluid is in- a pipe.

compressible, then p; = p, and continuity equation (5.2) reduces to
AV, =A,V, ..(5.3)
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» 5.6 CONTINUITY EQUATION IN THREE-DIMENSIONS

Z
{ " dvdz is constant}
D H
! [}
A :W E dz
Cl AT A
u F -G X
BL-V dy
lt—— dx —»l
Y Fig. 5.6

Consider a fluid element of lengths dx, dy and dz in the direction of x, y and z. Let u, v and w are the
inlet velocity components in x, y and z directions respectively. Mass of fluid entering the face ABCD
per second

= p X Velocity in x-direction X Area of ABCD
=pXuX(dyXxdz)

~ v

Then mass of fluid leaving the face EFGH per second = pu dydz +ai (pu dydz) dx
X
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Gain of mass in x-direction
= Mass through ABCD — Mass through EFGH per second

= pu dydz — pu dydz - 58—— (pu dydz)dx
X

=- 2 (pu dydz) dx
ox

R

=- i (pu) dx dydz
ox

Similarly, the net gain of mass in y-direction

= — i (pv) dxdydz
dy
: N d
and in z-direction =- a— (pw) dxdydz
z i

Net gain of masses = — 9 (pu)+ 9 (pv)+ 9 (pw) | dxdydz
dx dy dz
Since the mass is neither created nor destroyed in the fluid element, the net increase of mass per unit
time in the fluid element must be equal to the rate of increase of mass of fluid in the element. But mass

of fluid in the element is p. dx. dy. dz and its rate of increase with time isE (p dx. dy. dz) or

dt

0
—p . dx dy dz.

dt
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Equating the two expressions,

d d d _dp
or —[ o (pu) + 5 (pv)+ o [pw):| dxdydz = o dxdydz
or % - i(p;.\t) + i(pv] + 9 (pw) = 0 [Cancelling dx.dy.dz from both sides] ...(5.3A)
ot ox dy 0z

Equation (5.3A4) is the continuity equation in cartesian co-ordinates in its most general form. This
equation is applicable to :
(i) Steady and unsteady flow,
(7f) Uniform and non-uniform flow, and
(iii) Compressible and incompressible fluids.

)
For steady flow,a—? = () and hence equation (5.3A) becomes as

0 d d
—\pu) +— PV — = ...(5.3B
ax(p)+ay(P)+aZ(pw) 0 (5.3B)
If the fluid is incompressible, then p is constant and the above equation becomes as
Ju Jdv Iw
ox dy 0z

Equation (5.4) is the continuity equation in three-dimensions. For a two-dimensional flow, the com-
ponent w = () and hence continuity equation becomes as

au +ﬁ =(. (55)

ox  dy
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Streamlines: are a family of that are

instantaneously to the vector of the flow. These
show the direction in which a massless fluid element will travel at
any point in time.

Streaklines: are the of points of all the fluid particles that
have passed continuously through a particular spatial point in the
past. Dye steadily injected into the fluid at a fixed point extends
along a streakline.

Pathlines: are the that individual fluid particles follow.
These can be thought of as "recording” the path of a fluid element
in the flow over a certain period. The direction the path takes will
be determined by the streamlines of the fluid at each moment in
time.


https://en.wikipedia.org/wiki/Curve
https://en.wikipedia.org/wiki/Tangent
https://en.wikipedia.org/wiki/Velocity
https://en.wikipedia.org/wiki/Locus_(mathematics)
https://en.wikipedia.org/wiki/Trajectory

The direction of maanetic field lines are streamlines represented
by the alignment of iron filings sprinkled on paper placed above a
bar magnet



https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Iron_filings
https://en.wikipedia.org/wiki/File:Magnet0873.png
https://en.wikipedia.org/wiki/File:Magnet0873.png

*Kinematics of Flow

A of from a shows the pathlines for the flow
of hot air.



https://en.wikipedia.org/wiki/Long-exposure_photo
https://en.wikipedia.org/wiki/Spark_(fire)
https://en.wikipedia.org/wiki/Campfire
https://en.wikipedia.org/wiki/File:Kaberneeme_campfire_site.jpg
https://en.wikipedia.org/wiki/File:Kaberneeme_campfire_site.jpg
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Example of a streakline used to visualize the flow around a car
Inside a wind tunnel.


https://en.wikipedia.org/wiki/File:Aeroakustik-Windkanal-Messhalle.JPG
https://en.wikipedia.org/wiki/File:Aeroakustik-Windkanal-Messhalle.JPG

*Kinematics of Flow

Solid blue lines and broken grey lines represent the
streamlines. The red arrows show the direction and
magnitude of the flow velocity. These arrows are tangential to
the streamline. The group of streamlines enclose the green
curves to form a stream surface.


https://en.wikipedia.org/wiki/File:Streamlines_and_streamtube.svg
https://en.wikipedia.org/wiki/File:Streamlines_and_streamtube.svg
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» 5.9 TYPES OF MOTION

A fluid particle while moving may undergo anyone or combination of following four types of
displacements :
(i) Linear Translation or Pure Translation,
(ii) Linear Deformation,
(ii7) Angular Deformation, and
(iv) Rotation.
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YA AY
d’
5 |
a + —"b’ "
I ‘C' ] 1
a T b ap l_|q_ ‘b ,
U eSama s ! N —'b
. B H || -
O X 0 o’ X

(a) LINEAR TRANSLATION (b) LINEAR DEFORMATION

5.9.1 Linear Translation. Itis defined as the movement of a fluid element in such a way that it
moves bodily from one position to another position and the two axes ab and cd represented in new
positions by a’b” and ¢’d’ are parallel as shown in Fig. 5.11 (a).

5.9.2 Linear Deformation. It is defined as the deformation of a fluid element in linear direction
when the element moves. The axes of the element in the deformed position and un-deformed position

are parallel, but their lengths change as shown in Fig. 5.11 (b).
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dl

B
& ;-id.,é:.
3 L1

2 Yoty

c
|
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(c) ANGULAR DEFORMATION (d) PURE ROTATION
Fig.5.11. Displacement of a fluid element.
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5.9.3 Angular Deformation or Shear Deformation. It is defined as the average change in
the angle contained by two adjacent sides. Let AB; and A®, is the change in angle between two
adjacent sides of a fluid element as shown in Fig. 5.11 (c), then angular deformation or shear strain

rate
- L (a8, + 20,
2
Now 70, =2 AX Y g g, = O Ay 9
ox Ax ox dy Ay dy
Angular deformation = % [AB, + AB,]
or Shear strain rate = l E + % ...(5.16)
2|dx dy
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5.9.4 Rotation. It is defined as the movement of a fluid element in such a way that both of its
axes (horizontal as well as vertical) rotate in the same direction as shown in Fig. 5.11 (d). It is equal

to%(%v- ~ g_u] for a two-dimensional element in x-y plane. The rotational components are
X ay
ol (ﬂ _au)
¢ 2\ ox ay )
1 3
G JELY 0w 0| (5.17)
T 2\dy 0z )
g1 (% . 3_W)
W20z o%

)
5.9.5 Vorticity. Itis defined as the value twice of the rotation and hence it is given as 2.
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5.9.5 Vorticity. It is defined as the value twice of the rotation and hence it is given as 2.
Problem 5.18 A fluid flow is given by V = 8x°i — 10x°yj.
Find the shear strain rate and state whether the flow is rotational or irrotational.

Solution. Given : V = 8x7i — 10x%yj
u=83 M _ g2 O _
Bx
and 10xty, & = Z 20y, = 102
ox av

(i) Shear strain rate is given by equation (5.16) as

1{ov du) 1
=—|—+—|==(-20 0) = = 10xy. Ans.
[E}x+ayJ 2{ xy + 0) Xy. Ans

(i) Rotation in x - y plane is given by equation (5.17) or

Jdv  du 1
— e == (=20xvy-0)=-=10
P2 = [Bx 8}?] 2{ 5 =0) »

As rotation W, # (). Hence flow is rotational. Ans.
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5.9. CIRCULATION AND VORTICITY

Stream lines

Let us consider a closed curve in a two-
dimensional flow field shown in Fig. 5.18; the
curve being cut by the stream lines. Let P be
the point of intersection of the curve with one
stream line, 8 be the angle which the stream
line makes with the curve. The component of
velocity along the closed curve at the point of
intersection is equal to ¥ cos 8. Circulation I is
defined mathematically as the line integral of the
tangential velocity about a closed path (contour).

Thus,

Tangent to ds

I = @Vcosﬂ.ds

where, ¥V = Velocity in the flow field at
the element ds, and

Fig. 5.18. Circulation in a two-dimensional flow.

B = Angle between V and tangent to the path (in the positive anticlockwise direction
along the path) at that point.
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X
&
u +i}—u Ay
oy
D =
//- Fluid element
Ay
L B
u
A A ,
: v+ ,\Q Ax
v ox
» X
- X Fig. 5.19. Irrotational flow condition.

Circulation around regular curves can be obtained by integration. Let us consider the circulation
around an elementary box (fluid element ABCD) shown in Fig. 5.19.

Starting from 4 and proceeding anticlockwise, we have:

dl' = uﬂuc+[v+@ﬂx}ﬁy —(u+a—uﬂylﬂx—vﬁy
ox a

———]&x.&y

v ou
=5
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The vorticity (Q) is defined as the
circulation per unit of enclosed area, ;

Q= £ Thus .
A

dal’ _c‘;‘v cu
Ax.Ay ox Oy

..(5.29)

If a flow possesses vorticity, it is
rotational. Rotation ® (omega) is defined as
one-half of the vorticity. or

_1[av 6u:|
1) Mttt Wt
2| é&x oy

The flow is irrotational if rotation ® is
zero.
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5.8.2 Stream Function. Itis defined as the scalar function of space and time, such that its partial
derivative with respect to any direction gives the velocity component at right angles to that direction. It
is denoted by y (Psi) and defined only for two-dimensional flow. Mathematically, for steady flow it is
defined as y = f (x, y) such that

Iy
i
ox
Iy
and — =y
dy
o , : : . du  ov
The continuity equation for two-dimensional flow is ™ + 3, =0.
A ¥

Substituting the values of ¥ and v from equation (5.12), we get

o oy) @ (aw] 'y 'y
| = — — — | = '[] - - {].
ox ( dy ]+ dy \ dx o dxdy ¥ dxdy

Hence existence of y means a possible case of fluid flow. The flow may be rotational or irrotational.

The rotational component ®, is given by ®, = %(; - g—u]
x dy

Substituting the values of u and v from equation (5.12) in the above rotational component, we get

_l|2(av)_ 9 aw)_1/2% 2%y
o, = = >t 53
2ldx\ox) ayl\ oy 2| ox dy
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For irrotational flow, ®, = 0. Hence above equation becomes as
which is Laplace equation for .

The properties of stream function () are :

1. If stream function () exists, it is a possible case of fluid flow which may be rotational or
irrotational.

2. If stream function () satisfies the Laplace equation, it is a possible case of an irrotational flow.
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5.8.1 Velocity Potential Function. It is defined as a scalar function of space and time such
that its negative derivative with respect to any direction gives the fluid velocity in that direction. It is
defined by ¢ (Phi). Mathematically, the velocity, potential is defined as ¢ = f (x, y, z) for steady flow
such that

"%

where u, v and w are the components of velocity in x, vy and z directions respectively.

dv  dw
The continuity equation for an incompressible steady flow is E)_u g 0.

ox dy 8z

Substituting the values of «, v and w from equation (5.9), we get

()22 2(3)-s
dx\ dx) odyl dy) dz\ 9z

8? a¢+a¢ 0.
ax*  oy? 9t

or

Equation (5.10) is a Laplace equation.
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2 2
% 3_¢ = 0. ..(5.11)

ox® dy*

If any value of ¢ that satisfies the Laplace equation, will correspond to some case of fluid flow.

For two-dimension case, equation (5.10) reduces to

e ey
“T2laxl ay) ay\ ax)| 2| axay dyox

m__'ir’_aq)]_a r_aq}\‘_l‘_ az¢+azq}‘
}1_2_83'\ dx) odx\ aZ;_-Z_ dzdx  0xdz |
o= L[ 2( ) _2( M)L[ Fe o
“T2lay\ az) a\ dy)] 2| oy oy,

0% _ 9% 0% _ 0% .
dxdy 0dydx 9zox oxdz =

0, =0,=00=0.

If ¢ is a continuous function, then
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When rotational components are zero, the flow is called irrotational. Hence the properties of the
potential function are :

1. If velocity potential (¢) exists, the flow should be irrotational.

2. If velocity potential (¢) satisfies the Laplace equation, it represents the possible steady incom-
pressible irrotational flow.
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5.8.5 Flow Net. A grid obtained by drawing a series of equipotential lines and stream lines is called
a flow net. The flow net is an important tool in analysing two-dimensional irrotational flow problems.
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Fig. 5.22. Typical flow nets.
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» 5.10 VORTEX FLOW

Vortex flow is defined as the flow of a fluid along a curved path or the flow of a rotating mass of
fluid is known a *Vortex Flow’. The vortex flow is of two types namely :
1. Forced vortex flow, and

2. Free vortex flow.

5.10.1 Forced Vortex Flow. Forced vortex flow is defined as that type of vortex flow, in
which some external torque is required to rotate the fluid mass. The fluid mass in this type of flow,
rotates at constant angular velocity, . The tangential velocity of any fluid particle is given by

V=mWXr ...(5.18)
where r = Radius of fluid particle from the axis of rotation.
CENTRAL AXIS

N i

=== == LIQUID

VERTICAL- —
CYLINDER [———%+——

|

| l«SHAFT

(a) CYLINDER IS STATIONARY (b) CYLINDER IS ROTATING
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Hence angular velocity o is given by

y
® = — = Constant.
r

Examples of forced vortex are :

1. A vertical cylinder containing liquid which is rotated about its central axis with a constant
angular velocity ®, as shown in Fig. 5.12.

2. Flow of liquid inside the impeller of a centrifugal pump.

3. Flow of water through the runner of a turbine.

5.10.2 Free Vortex Flow. When no external torque is required to rotate the fluid mass, that
type of flow is called free vortex flow. Thus the liquid in case of free vortex is rotating due to the
rotation which is imparted to the fluid previously.

Examples of the free vortex flow are :

1. Flow of liquid through a hole provided at the bottom of a container.
2. Flow of liquid around a circular bend in a pipe.

3. A whirlpool in a river.

4. Flow of fluid in a centrifugal pump casing.
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Fig. 5.15
ir/ Axis of rotation

1
[Zz - ZI] -—_— [V:z - V|2].
2g

If the point 1 lies on the axis of rotation, A

Closed lo =0 le

cylindrical ~al | |
vessel i B , /-
S T — -
e I e

- -

U R U —

Fig. 6.72. Rotation of liquid in a closed cylindrical vessel.
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BUOYANCY AND FLOATATION

» 4.2 BUOYANCY

When a body is immersed in a fluid, an upward force is exerted by the fluid on the body. This
upward force is equal to the weight of the fluid displaced by the body and is called the force of
buoyancy or simply buoyancy.

by Archimedes’ principle which states as follows:

“When a body is immersed in a fluid either
wholly or partially, it is buoyed or lifted up by a force,
which is equal to the weight of fluid displaced by the
body.”

-wur

» 4.3 CENTRE OF BUOYANCY

It is defined as the point, through which the force of buoyancy is supposed to act. As the force of
buoyancy is a vertical force and is equal to the weight of the fluid displaced by the body, the centre of
buoyancy will be the centre of gravity of the fluid displaced.
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4.7.1 Stability of a Sub-merged Body.

(a) (b) (c)
STABLE EQUILIBRIUM UNSTABLE EQUILIBRIUM NEUTRAL EQUILIBRIUM

Fig.4.12 Stabilities of sub-merged bodies.

(a) Stable Equilibrium. When W = Fj and point B is above G, the body is said to be in stable
equilibrium.

(b) Unstable Equilibrium. If W = Fj, but the centre of buoyancy (B) is below centre of gravity (G),
the body is in unstable equilibrium as shown in Fig. 4.12 (b). A slight displacement to the body, in the
clockwise direction, gives the couple due to W and F; also in the clockwise direction. Thus the body
does not return to its original position and hence the body is in unstable equilibrium.

(c) Neutral Equilibrium. If Fz= W and B and G are at the same point, as shown in Fig. 4.12 (c), the
body is said to be in neutral equilibrium.
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> 4.4 META-CENTRE

It is defined as the point about which a body starts oscillating when the body is tilted by a small
angle. The meta-centre may also be defined as the point at which the line of action of the force of
buoyancy will meet the normal axis of the body when the body is given a small angular displacement.

NORMAL AXIS ANGULAR
| DISPLACEMENT

NORMAL AXIS
(@) (b)

Fig. 4.5 Meta-centre

This point M is called Meta-centre.
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» 4.5 META-CENTRIC HEIGHT

The distance MG, i.e., the distance between the meta-centre of a floating body and the centre of
gravity of the body is called meta-centric height.
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4.2. TYPES OF EQUILIBRIUM OF FLOATING BODIES

The equilibrium of floating bodies 1s of the following types:
1. Stable equilibrium, 2. Unstable equilibrium, and 3. Neutral equilibrium.

4.3.1. Stable Equilibrium

When a body is given a small angular displacement (i.e. tilted slightly), by some external
force, and then it returns back to its original position due to the internal forces (the weight and the
upthrust), such an equilibrium is called stable equilibrium.

4.3.2. Unstable Equilibrium

If the body does not return to its original position from the slightly displaced angular position
and heels farther away, when given a small angular displacement, such an equilibrium is called an
unstable equilibrium.

4.3.3. Neutral Equilibrium

If a body, when given a small angular displacement, occupies a new position and remains at
rest in this new position, it is said to possess a neutral equilibrium.
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Small Small
Line of A8, disturbance A8 disturbance
symmetry \ angle \ angle

Either Restoring moment or Overturning moment

(a) (b) (e)
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DISTURBING
| - COUPLE

i lw Wi m
G Gy |
B*F Bd 1B
B Ry

(i) (ii)

(a) Stable equilibrium M is above G (b) Unstable equilibrium M is below G.
Fig.4.13  Stability of floating bodies.
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Fig. 4.6 Meta-centre height of floating body.

Meta-centric height = GM = — - BG.
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» 4.8 EXPERIMENTAL METHOD OF DETERMINATION OF META-CENTRIC
HEIGHT

The meta-centric height of a floating vessel can be determined, provided we know the centre of

gravity of the floating vessel. Let w, is a known weight placed over the centre of the vessel as shown in
Fig. 4.23 (a) and the vessel is floating.

F‘HW1

(a) Floating body (b) Tilted body
Fig.4.23 Meta-centric height.

Let W = Weight of vessel including w,
G = Centre of gravity of the vessel
B = Centre of buoyancy of the vessel
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» 3.8 PRESSURE DISTRIBUTION IN A LIQUID SUBJECTED TO CONSTANT
HORIZONTAL/VERTICAL ACCELERATION

Tank
(stationary)

-

Free surface of
liquid

fe - - e - - - -
- e -
b - e e o - -
b o - - - - -
b - - - - - - - - -
b - e - - - - -

Free surface of

Original liquid
surface

Moving horizontal

Back end /

or Rear end

Tank moving

(i) the pressure force P exerted by the surrounding fluid on the element C. This force is normal to

the free surface.

(if) the weight of the fluid element i.e., m X g acting vertically downward.
(i11) accelerating force i.e., m X a acting in horizontal direction.
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Resolving the forces horizontally, we get
PsinB+mxa=0
or P sin 8 = — ma
Resolving the forces vertically, we get
PcosO-mg=0
or PcosO=mxg
Dividing (i) by (i), we get

tan 0=— < [m‘ d Numcrica.lly]
g

Lines of constant
pressure
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Consider the equilibrium of the elementary prism DE.
The forces acting on this prism DE in the vertical direction are :
(7) the atmospheric pressure force (p, X dA) at the top end of the prism acting downwards,
(if) the weight of the element (p X g X h x dA) at the C.G. of the element acting in the downward
direction, and
(iif) the pressure force (p X dA) at the bottom end of the prism acting upwards.
Since there is no vertical acceleration given to the tank, hence net force acting vertically should be
Zero.
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pXdA—pyxdA —pghdA=0
or P-py—pgh=0 or p=p,+pgh
or p—po=pgh
Oor gauge pressure at point D is given by

p =pgh

or pressure head at point D, Loy
Pg
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- S /i
F,=ng><Al><h|,whereA,=h,xbandh|=7'
=pxgx(h|xb)xh—'=lp,g.b.h,2
2 2
v - h
and Fy=pXgxXA,X ha, where A,=h,xband h, =—
h
=ngx(h2xb)x72
1 2
=—pg.bXxhy.
298 2
Fig. 3.44(a)
It can also be proved that the difference of these two forces (i.e., F, — F,) is equal to the force

required to accelerate the mass of the liquid contained in the tank i.e.,
Fi-F,=M%Xa
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Thus dynamics of fluid flow is the study of fluid motion with the forces causing flow. The
dynamic behaviour of the fluid flow is analysed by the Newton’s second law of motion, which relates
the acceleration with the forces. The fluid is assumed to be incompressible and non-viscous.

» 6.2 EQUATIONS OF MOTION

According to Newton’s second law of motion, the net force F, acting on a fluid element in the
direction of x is equal to mass m of the fluid element multiplied by the acceleration a, in the x-direction.
Thus mathematically,

F.=m.a, .(6.1)

In the fluid flow, the following forces are present :

(i) F,, gravity force.

(it) F,, the pressure force.
(iii) F,, force due to viscosity.
(iv) F, force due to turbulence.

(v) F_, force due to compressibility.



1. Inertia Force (F)). It isuequal to the product of mass and acceleration of the flowing fluid and
acts in the direction opposite to the direction of acceleration. It is always existing in the fluid flow
problems.

2. Viscous Force (F)). It is equal to the product of shear stress (1) due to viscosity and surface
area of the flow. It is present in fluid flow problems where viscosity is having an important role to
play.

3. Gravity Force (F)). It is equal to the product of mass and acceleration due to gravity of the
flowing fluid. It is present in case of open surface flow.

4. Pressure Force (F ). Itis equal to the product of pressure intensity and cross-sectional area of
the flowing fluid. It is present in case of pipe-flow.

5. Surface Tension Force (F)). It is equal to the product of surface tension and length of surface of
the flowing fluid.

6. Elastic Force (F,). It is equal to the product of elastic stress and area of the flowing fluid.

For a flowing fluid, the above-mentioned forces may not always be present. And also the
forces, which are present in a fluid flow problem, are not of equal magnitude. There are always one
or two forces which dominate the other forces. These dominating forces govern the flow of fluid.
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Thus in equation (6.1), the net force
F.= {Fg)x + (FPJI +(F), + (F), + (F.),.

(i) If the force due to cumpressibility, F . 18 negligible, the resulting net force
Fe=(Fy)+ (Fp+ (F), + (F),

and equation of motions are called Reynold’s equations of motion.

(if) For flow, where (F,) is negligible, the resulting equations of motion are known as
Navier-Stokes Equation.

(iii) If the flow is assumed to be ideal, viscous force (F,) is zero and equation of motions are
known as Euler’s equation of motion.
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» 6.3 EULER’S EQUATION OF MOTION

Consider a stream-line in which flow is taking place in s-direction as shown in Fig. 6.1. Consider a
cylindrical element of cross-section dA and length ds. The forces acting on the cylindrical element are:

1. Pressure force pdA in the direction of flow.
0
2. Pressure force [ p+ a—pdsJ dA opposite to the direction of flow.
s

3. Weight of element pgdAds.

Let 6 is the angle between the direction of flow and the line of action of the weight of element.
The resultant force on the fluid element in the direction of s must be equal to the mass of fluid
element X acceleration in the direction s.

pgdAds

(@) (b)
Fig. 6.1 Forces on a fluid element.
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pdA - (p + -gf- ds) dA — pgdAds cos 8
s

= pdAds X a; -.(6.2)
where a, is the acceleration in the direction of s.

dv . :
Now a = 7 where v is a function of s and 1.

dvds dv vov ov { ds }
— e S + o '.' —
1

TOsdt a3 o | dr

If the flow is steady, ﬂ =0

ot ~{
ST 9s <

Substituting the value of a, in equation (6.2) and simplify-
ing the equation, we get

g

Resan Sl gne elbirisay
g ideruhadan it FY Fig. 6.1
. ap vov
Dividing b dsdA, - —— —gcos 0= —
g P pos 8 ds
Jd
or a—p-rgcos9+v—v=0
pos as
But from Fig. 6.1 (b), we havecosG:?
s
ld—p+gd—z+ﬂ=0 or Q+gdz+vdv=0
p ds ds ds p
or Q+gdz+vdv=0
P

Equation (6.3) is known as Euler’s equation of motion.



» 6.4 BERNOULLI'S EQUATION FROM EULER’'S EQUATION

Bernoulli’s equation is obtained by integrating the Euler’s equation of motion (6.3) as
Jd—P + Jgdz + Iudv = constant
P

If flow 1s incompressible, p 1s constant and

P Vo
— + g7 + — = constant
1 Leonhard Euler (1707-83)
Mathematician bom near Baske in Switzerland. A
pupil of Johann Bemoulli and a dase friend of Dansel
_P 'I-'Z Een?uulli. Contributed enormn!.usly la lh-g mathe-
or ~“—+ 7+ — = constant Tomaltig e ccsatons o i of a pere
P,g 12 fluid and solid. Lost his sight in one eye and then
both eyes, as a result of 3 disease, but still continued
hi resaarch.
2
P v
or — +— + Z = conslant
pg 28
Equation (6.4) is a Bernoulli’s equation in which
- w nnit A ~ e onire D
— = pressure energy per unit weight of fluid or pressure head.
P8

vzflg = kinetic energy per unit weight or kinetic head.
z = potential energy per unit weight or potential head.

» 6.5 ASSUMPTIONS

The following are the assumptions made in the derivation of Bernoulli’s equation :
(i) The fluid is ideal, i.e., viscosity is zero (ii) The flow is steady
(iii) The flow is incompressible (iv) The flow is irrotational.
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Daniel Bernoulli {1700-82)

Mathematican born i Groningen  in  the
Netherlands, & good friend of Euler. Made efforts
to popularise the law of fluid motion, while
tackhing warious novel problers in fluid statics
and dynamics. Onginated the Latin ward fydro-
dynarica, meaning fluid dynamics.

). 5.3 Conservation of fluid energy

Fig. 52 Movement of roller-coaster
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Fig. 5.6 Exchange between pressure head and velocity head

o, P v P v P
E+F+2]—E+E+3=+h;—3'+?+33+ﬁ3

0 . . , ,
Section | Section 2 Section 3 Dadum plane

-‘q!. "42' -‘q!
Fig. 5.7 Hydraulic grade line and energy line
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e r

Problem 6.2 A pipe, through which water is flowing, is having diameters, 20 cm and 10 cm at the
cross-sections | and 2 respectively. The velocity of water at section 1 is given 4.0 m/s. Find the velocity
head at sections | and 2 and also rate of discharge.

Solution. Given :
D =20cm=02m

Area, A = % D= % (2)2=0.0314 m’

V, = 4.0 m/s e d0em

D2 = 0.] m
A, =T (1)? = 00785 m?
4 Fig. 6.2
(i) Velocity head at section |
2
o HORAD s v,
2g 2x9.81
(if) Velocity head at section 2 = V22/2g
To find V,, apply continuity equation at 1 and 2
AV, 0314
AV, =AV, or V,=—"11l= x 4.0 = 16.0 m/s
A 7 A, 00785
Velocity head at section 2 = Y o = 160 ¥lodke, = 83.047 m. Ans.
28 2 x9.381
(iii) Rate of discharge =AYV, or AV,

=0.0314 x 4.0 = 0.1256 m’/s
= 125.6 litres/s. Ans. {1 m® = 1000 litres}
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» 6.6 BERNOULLI'S EQUATION FOR REAL FLUID

2 2
Py By =200 i an
pe  2g Pg 28
where fi; is loss of energy between points 1 and 2.

» 6.7 PRACTICAL APPLICATIONS OF BERNOULLI’'S EQUATION

Bernoulli’s equation is applied in all problems of incompressible fluid flow where energy consid-
erations are involved. But we shall consider its application to the following measuring devices :

1. Venturimeter.

2. Orifice meter.

3. Pitot-tube.
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Types of venturimeters:

Venturimeters may be classified as follows:
1. Honzontal venturimeters.

2_ Vertical venturimeters.

3. Inclined venturimeters.

%
H
In the case of water
/ P1 =P
| —- U] | —— U
W T e

(N '
Section 1 Section 2
. \ )

A 1\\\\ 7’ % ’A 2

\\\ s’

-~
~

————

In the case of air

\
|
¥ : :'}
|
H |= :!
2y P
|
W
7

£

L

Fig. 5.8 Venturi tube

Glovanni Battista Venturi (1746-1822)

ftalian physicst After expeniencing life as a priest,
teacher and auditor, finally became a professor of
axperimental physics. Studied the effects of eddies
and the flow rates at vanous forms of mouthpieces
fitted to an orifice, and clarified the basic principles
of the Venturi tube and the hydraulic jump in an
apen water channal.
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6.6.1.1. Horizontal venturimeters

A venturimeter consists of the following three parts:
(i) A short converging part,

(7)) Throat, and
(iii) Diverging part. I ? :: i d, :: & i
" —» —» | ¥

Conver- .
| ent L[hmrgmtpsr;
Inlet [ part Z =754y
Throat

L dy i)
(Thmat ratio F] varies 4t-::r 3

or, 0= JLIA’X N (65)

A -4
or, Q = CJh
where, C = constant of venturimeter
A
= ,{23
Af - 4

Eqn. (6.5) gives the discharge under ideal conditions and 1s called theoretical discharge. Actual
discharger (Q,,) which 15 less than the theoretical discharge (O, ) 15 given by:

A
Q. = Cyx yoy x \[2gh (66)

where, C; = Co-gfficient of venturimeter (or co-efficient of discharge) and its value 15 less than
unity (varies between 0.96 and 0.98)

® Dus to variation of C ; venturimeters are not suitable for very low velocities.
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Value of ‘h’ given by differential U-tube manometer

Case I. Let the differential manometer contains a liquid which is heavier than the liquid flowing
through the pipe. Let
S, = Sp. gravity of the heavier liquid
S, = Sp. gravity of the liquid flowing through pipe
x = Difference of the heavier liquid column in U-tube

Then h=x {‘;—"’— } ...(6.9)

@

Case II. If the differential manometer contains a liquid which is lighter than the liquid flowing
through the pipe, the value of & is given by
Sﬂ

where S, = Sp. gr. of lighter liquid in U-tube
S, = Sp. gr. of fluid flowing through pipe
x = Difference of the lighter liquid columns in U-tube.
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Case III. Inclined Venturimeter with Differential U-tube manometer. The above two cases are
given for a horizontal venturimeter. This case is related to inclined venturimeter having differential
U-tube manometer. Let the differential manometer contains heavier liquid then £ is given as

Py P> S
h=|L+z |- Z=+z, | =x | 2= . (6.11)
{ﬂg 1] [Pg ?‘J [55 ]

Case IV. Similarly, for inclined venturimeter in which differential manometer contains a liquid
which is lighter than the liquid flowing through the pipe, the value of A is given as

h=[ﬂ+z|J—[&+z2]=x[l—i} .(6.12)
Pg P8 S,
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6.7.2 Orifice Meter or Orifice Plate.

a i 3
Ll | €
\j [al J " \28h

2 2
I | 2. o] e
t o ‘
B C,a,+/28h _ Cyaya;42gh
]

a,

where C, = Co-efficient of discharge for orifice meter.
The co-efficient of discharge for orifice meter is much smaller than that for a venturimeter.
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6;?#3‘ Pitﬂt't“bt.

e, Fig. 6.13 Pitot-tube.

Let

Henry de Pitot (1695-1771)

Born in Aramon in France. Studied mathematics and
physics in Paris. As a civil engineer, undertook the
drainage of marshy lands, construction of bridges
and city water systems, and flood countermeasures.
His books cover structures, land survey, astronomy,
mathematics, sanitary equipment and theoretical
ship steering in addition to hydraulics. The famous
Pitot tube was announced in 1732 as a device to
measure flow velocity.

v

p; = intensity of pressure at point (1)

v, = velocity of flow at (1)
p, = pressure at point (2)

v, = velocity at point (2), which is zero

H = depth of tube in the liquid

h = rise of liquid in the tube above the free surface.

Applying Bernoulli’s equation at points (1) and (2), we get
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faces into the flow, water in the
tube goes up. From its height, -1

the flow velocity can be |
computed.’
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2
o badeda bl [
pg 2g pg 28
But z, = z, as points (1) and (2) are on the same line and v, = 0.
P = pressure head at (1)=H
pg
P2 _ pressure head at (2) = (k + H)
. Fig. 6.13 Pitot-tube. Pg
Substituting these values, we get
2 2
Vi V)
H+ —=(h+ S oh=— or v, =, 2gh
22 ( H) 2g I 8

This is theoretical velocity. Actual velocity is given by

(vt = C, /280
where C, = Co-efficient of pitot-tube

Velocity at any point v=C, +2gh
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T E: Pitot
, Ha pbe
Piezometer —» ﬁ =
2g =
L B=is g
= w =
= = Pi
h =&' ‘PT = ’ :: / 24
o w :_ y
Liquid in v & Liquid out
—_— e ] ‘——ﬁ—-—-— e
P S
Fig. 6.38. Pitot tube.
2 2
po V2 _pe oLV,
w  2g 2g

w
= 1,‘23 (h, —h or .\f}lg Ah (1)

Py = Pressure at point “P°, i.e. static pressure,
= Velocity at point “P’_i e free flow velocity,
p, = Stagnation pressure at pomt “S”, and
Dvnamic pressure
Difference between stagnation pressure head (4,) and static
pressure head (h).

e
Il
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NN AL e e e b2 el ~ ARy i

To manometer
(Stagnation pressure)

To manometer
(Static pressure limb) w

8dto 10d

Static hole

Static hole

If y 1s the manometric difference, then

S
ah = (%2 -1)
s
where, S, = Specific gravity of manometric hiquid, and
S = Specific gravity of the liquid flowing through the pipe.

v = CJ2gAh -2

where, C = A connective coefficient which takes into account the effect of stem and bent leg.

The most commonly used form of Pitot static tube known as the Prandle-Pitot-tube 1s so
designed that the effect of stem and bent leg cancel each other, ie, C = 1.
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IMPULSE-MOMENTUM EQUATION

“The net force acting on a mass of fluid is equal to change in momentum of flow per unit
time in that direction ™,

As per Newton’s second law of motion,
F = ma

where, m = Mass of fluid,
F = Force acting on the fluid, and
a = Acceleration (acting in the same direction as F).

But acceleration, a = av
dt
dv _ d(mv)
F = —_— = —=
"t T " ar

(‘m’ is taken inside the differential, being constant)
This equation is known as momentum principle. It can also be written as:
Fdt = d(mv)

This equation is known as Impulse-momentum equation. It may be stated as follows:

“The impulse of a force F acting on a fluid mass ‘m’ in a short interval of time dt is equal to
the change of momentum d(mv) in direction of force™.

The impulse-momentum equations are often called simply momentum equations.
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Force exerted by a flowing fluid on a pipe bend

A
b4

x

(b)

Fig.6.18 Forces on bend.

F.=p0O(V,-V,cos8)+pA, -pA,cosB

F, = pQ (- V,sin ) — p,A, sin 6

Now the resultant force (Fj) acting on the bend
- 2 2
= ,Ez + P,:w

And the angle made by the resultant force with horizontal direction is given by
F,

tan 6 = ——
Fx
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MOMENT OF MOMENTUM EQUATION

Moment of momentum equation is derived from moment of momentum principle which states

as follows:
“The resulting torque acting on a rotating fluid is equal to the rate of change of moment of
momentum?”.
Q = Steady rate of flow of fluid. |<7 0.4 m —)417 0.6 m 4)-{
p = Density of fluid, | | |
¥, = Velocity of fluid at section 1 + < ox > 5
1 ty 2 o
¥, = Radius of curvature at section 1, and
V,and r, = Velocity and radius of curvature at section 2. l i
8 m/s 8 m/s

Momentum of fluid at section 1= Mass x velocity = pQ x ¥
. Moment of momentum per second of fluid at section 1 =pQ X ¥V, xr,
Similarly. moment of momentum per second of fluid at section 2 = pQ x ¥, x r,
. Rate of change of moment of momentum = pQ V, r, — pQV,r, = pO(V, 1, — Vi1,)
According to the moment of momentum principle,
Resultant torque = Rate of change of moment of momentum
T = pQ(V,r,—Vir,)
Eqn. (6.31) is known as moment of momentum equation. This equation is used:
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8.1. INTRODUCTION

An orifice is an opening in the wall or base of a
vessel through which the fluid flows. The fop edge of
the orifice is always below the free surface (If the free
surface 1s below the top edge of the orifice., becomes a
weir)

A mouthpiece is an attachmnent in the form of a
small tube or pipe fixed to the orifice (the length of pipe
extension is usually 2 to 3 times the orifice diameter) and
15 used to increase the amount of dischree.

@ Orifices as well as mouthpieces are used to measure
the discharee.
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8.2. CLASSIFICATION OF ORIFICES

The orifices are classified as follows
1. According to size:
(i) Small orifice (if) Large orifice.
An orifice is termed small when its dimensions are
small compared to the head causing flow. The velocity

does not vary appreciably from top to the bottom edge of
the orifice and is assumed to be uniform.

The orifice is large if the dimensions are comparable
with the head causing flow. The variation in the velocity
from the top to the bottom edge is considerable.

2. According to shape
(i) Circular orifice (i7) Rectangular orifice
(7if) Square orifice (iv) Triangular orifice.
3. Shape of upstream edge
(i) Sharp-edged orifice
(if) Bell-mouthed orifice.
4. According to discharge conditions
(i) Free discharge orifices
(ify Drowned or submerged orifices
(a) Fully submereged
(b) Partially submerged.

An orifice or a mouthpiece 1s said to be discharging free when 1t discharges into atmosphere. It 1s said
to be submerged when it discharges mnto another liguid.




FLOW THROUGH ORIFICES

'T: :-:-:_: =t JET OF
H FLUID
Vo
. 2
<—VENA-
e B RESNTRACTA
Ll L L L L L L Ll LAl

ig. 7.1 Tank with an orifice.

2 2
pg 28 pg 28
Z[=ZE
poovi py vi
I+ 1 - 2 + 2
pg 28 pg 2g
no_
Pg

P2 _ (0 (atmospheric pressure)

Pg

v, is very small in comparison to v, as area of tank is very large as compared to the area of the jet of

liquid.

v2
H+0=0+ —2%*
2g

v, = J2gH

(7.1

This is theoretical velocity. Actual velocity will be less than this value.
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» 7.4 HYDRAULIC CO-EFFICIENTS

The hydraulic co-efficients are

1. Co-efficient of velocity, C,

2. Co-efficient of contraction, C.
3. Co-efficient of discharge, C,.

7.4.1 Co-efficient of Velocity (C,). It is defined as the ratio between the actual velocity of a
jet of liquid at vena-contracta and the theoretical velocity of jet. It is denoted by C, and mathemati-
cally, C, is given as

Actual velocity of jet at vena - contracta

N
Y Theoretical velocity

= ﬁ, where V = actual velocity, /2gH = Theoretical velocity W(7.2)
8

The value of C, varies from 0.95 to (.99 for different orifices, depending on the shape, size of the
orifice and on the head under which flow takes place. Generally the value of C, = 0.98 is taken for
sharp-edged orifices.
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7.4.2 Co-efficient of Contraction (C_.). It is defined as the ratio of the area of the jet at
vena-contracta to the area of the orifice. It is denoted by C..

Let a = area of orifice and
a, = area of jet at vena-contracta.

Then C, = area of jet at vena-contracta

area of orifice

== ..(7.3)
a

The value of C, varies from 0.61 to 0.69 depending on shape and size of the orifice and head of
liquid under which flow takes place. In general, the value of C, may be taken as 0.64.

7.4.3 Co-efficient of Discharge (C,). Itis defined as the ratio of the actual discharge from an
orifice to the theoretical discharge from the orifice. It is denoted by C,. If Q is actual discharge and Q,,

is the theoretical discharge then mathematically, C, is given as

Q Actual velocity X Actual area

d= = . : :
O, Theoretical velocity X Theoretical area

Actual velocity s Actual area

" Theoretical velocity Theoretical area
Cd = C‘, X C(‘ (7.4)

The value of C, varies from 0.61 to 0.65. For general purpose the value of C, is taken as 0.62.




FLOW THROUGH ORIFICES

TIME REQUIRED FOR EMPTYING A TANK THROUGH AN
ORIFICE AT ITS BOTTOM

Egyptian water clock 3400 years old (London Science Museum)
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TIME REQUIRED FOR EMPTYING A TANK THROUGH AN
ORIFICE AT ITS BOTTOM

Let. A = Cross-sectional area of the tank.
a = Area of the orifice.
H, = Initial height of liquid.
H, = Final height of liquid
T = Time in seconds, required to
bring the level from H, to H,

Let at some instant the height of the liquid be A
above the orifice and let the liquid surface fall by an
amount dh after a small interval for time df.

Then, volume of the liquid that has passed the tank
in time df,

Fig. 8.13 Tank with an orifice at its bottom.

dg = —A-dh (1)



or

FLOW THROUGH ORIFICES

-~ +1
S S S R S
Cj 1. 428 —l+l C,.a. 28| 1
2

Hl 2 Hl

2 24(H, - JH,
=Cd.az.1i/ﬂ[‘/H—2—‘/H_’]= C[’d.a.\/g ]

ik 1:1)

For emptying the tank completely, H, = 0 and hence

= ZAJF] : (. 12)
C; .a.\/Z_g
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TIME OF EMPTYING A HEMISPHERICAL TANK

4 R(H"” - Hj”)—%(Hf” — Hf”)] .(7.13)

|
¢, xax@[S

For completely emptying the tank, H, = 0 and hence

T

iJ'ur:rf*'2 -EHE”]. (7.14)
3 5

It
i Cd'a'@[
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5. No. Physical Quantiry Symbol Dimensions
() Fundamental
it Length L L
2. Mass M M
3. Time r T
» 12.2 SECONDARY OR DERIVED QUANTITIES
S.No. Physical Quantity Symbol Dimensions
(b) Geometric
4. Area A I*
5% Volume Y L
(¢) Kinematic Quantities
6. Velocity v LT
7. Angular Velocity ® 7=
8. Acceleration a LT
9. Angular Acceleration o e
10. Discharge Q il
11. Acceleration due to Gravity g 57
12. Kinematic Viscosity Y L5
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(d) Dynamic Quantities

13 Force F MLT *
14. Weight W MLT
15. Density p ML

16. Specific Weight W ME T~
544 Dynamic Viscosity 1l S s
18. Pressure Intensity P ML TS
19. Modulus of Elasticity {g ML T
20. Surface Tension () =
21, Shear Stress T mML'T >
22, Work, Energy Wor E ML*T 2
23. Power P ML*T
24. Torque T ML*T 2
25. Momentum M MLT ™
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ANZIC COVETCU 111 Tauldns 1

Solution. (i) Angular velocity = _ =—=T"7"
Time T
.. . 2 rad 1 -2
(ii) Angular acceleration = radfsec” = ?= 7z =T"".
U . s L 5
(i1}  Discharge = Area x Velocity = L” x T :? =L'T .
. . . . n . du
(iv)  Kinematic viscosity (v) = —, where [l is givenby T=p .
¥
_ T _ Shear Stress _ Force
KWL T A
dy T L I
T
o oMx Lk
_ Mass X Acceleration _ T _ ML M MI-T-
Area X Time 12 % 1 1272 % 1
M M
and p=— = oML
Volume L
ML'T' .
Kinematic viscosity (V) = B_ ———=LT"
p ML
Length ML
(v) Force = Mass x Acceleration = M X ?ng - =—5 =MLT .
(Time) T
. -2
(vi) Specific weight o Weight _ Foree  MLT " _ yy2r-2,

" Volume  Volume [}
(vii) Dynamic viscosity, | is derived in (iv) as 0 = ML™'T".
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» 12.3 DIMENSIONAL HOMOGENEITY

Dimensional homogeneity means the dimensions of each terms in an equation on both sides are
equal. Thus if the dimensions of each term on both sides of an equation are the same the equation is
known as dimensionally homogeneous equation. The powers of fundamental dimensions (i.e., L, M, T)
on both sides of the equation will be identical for a dimensionally homogeneous equation. Such
equations are independent of the system of units.

Let us consider the equation, V= ,/2gH

Dimension of L.H.S. =V= 5 = LT

L2
Dimension of R.H.S. JZg—H = 1{—— XL= T =—=LT"
Dimension of L.H.S. = Dimension of R.H.S. = T‘l

Equation V= ,/ZgH is dimensionally homogeneous. So it can be used in any system of units.
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» 12.4 METHODS OF DIMENSIONAL ANALYSIS

If the number of variable involved in a physical phenomenon are known, then the relation among
the variables can be determined by the following two methods :

1. Rayleigh’s method, and

2. Buckingham’s m-theorem.
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12.4.2 Buckingham’s n-Theorem.

Buckingham’s 1-theorem states as follows:

“If there are n variables (dependent and independent variables) in a dimensionally
homogeneonus equation and if these variables contain m fundamental dimensions (such as M,
L, T, etc.) then the variables are arranged into (n-m) dimensionless terms. These dimensionless
ferms are called n-terms.”

Mathematically, if any vanable X, depends on independent vanables, X, X; X, . X . the
functional equation may be wrtten as:

X, = f(X), X, X, . X)) (73)
Eqn. (7.3) can also be written as:
AL X X, _X,) = 0 (74)

It 15 a dimensionally homogeneous equation and contains »n variables. If there are m fundamental
dimensions, then according to Buckingham’s n-theorem, 1t [eqn. (7.4)] can be wntten in terms of
number of m-terms (dimensionless groups) in which number of n-terms 1s equal to (n-m). Hence.
eqn. (7.4) becomes as:

Jﬁ (ﬂ-l7 T3, My "'ﬁ:n—:mj =0 -(?S]

Each dimensionless n-term 1s formed by combining m vanables out of the total n variables with

one of the remaining (n-m) variables 1.e. each m-term contains ( m + 1) vanables. These m vanables

which appear repeatedly in each of n-terms are consequently called repeating variables and are

chosen from among the variables such that they together involve all the fundamental dimensions and

they themselves do not form a dimensionless parameter: Let 1n the above case X, X; and X, are the
repeating variables if the fundamental dimensions m (M, L, T) = 3, then each term 1s written as:

m = X3 X3 X5 X,
ny = (X9 X2 x2 x;)
' -(7.6)

.= [X;x-m_xbl—u_xjn—m_‘r"] .
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where a,. b,. ¢;; a,. b,, ¢, etc. are the constants, which are determined by considering dimensional
homogeneity. These values are substituted in eqn. (7.6) and values of ny, 75, 5 ....m, _,, are obtamed.
These values of n's are substituted in eqn. (7.5). The final general equation for the phenomenon may
then be obtained by expressing anyone of the n-terms as a function of the other as

'i":l = ¢|[:']T1, ﬂ:ja ﬂ-d.-. """ T'::I':I - M]}

L) =¢'(ﬂ1=ﬂ3, | PR “n—m}

(D

12.4.3 Method of Selecting Repeating Variables. The number of repeating variables are

equal to the number of fundamental dimensions of the problem. The choice of repeating variables is
governed by the following considerations :

1. As far as possible, the dependent variable should not be selected as repeating variable.
2. The repeating variables should be choosen in such a way that one variable contains geometric

property, other variable contains flow property and third variable contains fluid property.
Variables with Geometric Property are

(i) Length, [ (ii) d (7if) Height, H etc.
Variables with flow property are
(i) Velocity, V (ii) Acceleration etc.

Variables with fluid property : (i) W, (ii) p, (iii) © etc.

3. The repeating variables selected should not form a dimensionless group.

4. The repeating variables together must have the same number of fundamental dimensions.
5. No two repeating variables should have the same dimensions.

In most of fluid mechanics problems, the choice of repeating variables may be (i) d, v, p (ii) I, v, p
or (iti) I, v, por (iv) d, v, .
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Example 7.9. Using Buckingham s n-theorem, show that the velocity through a circular orifice

is given by D
LL
V= ,2eH ¢ | —.——
gt ¢ {H' pVH }
where, = Head causing flow,

= Diameter of the orifice,

= Co-efficient of viscosity,

= Mass density, and

= Acceleration due to gravity. [GATE]

g o = 0@

Solution. ¥ is a functionof: H, D, n, pand g
Mathematically, V =f(HD,n,p.g) . |
or. fi(V.H.D.n,p, g =0 ...(i0)
.. Total number of variables.n= 6
Writing dimensions of each variable, we have:
V=ILT  H=L D=L p=ML'T,p=ML3 g=LT"
Thus, number of fundamental dimensions, m = 3
Number of n-terms = n—-m=6-3=3

Eqn. (if) can be written as:

fi (7 m3) =0 ...(1i0)
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Each m-term contains (m + 1) variables, where m = 3 and is also equal to repeating variables.
Choosing H.,g, p as repeating variables (V being a dependent variable should not be chosen as
repeating variable), we get three n-terms as:

T, = HY. 61 p%. 7
n, = H2.g2p2.D
Ty = H%.g%p%. 1

T,-term:
T, = HY. g pa .y
ML°T° = % T . (ML . (LT
Equating the exponents of M, L and T respectively, we get:

For M: 0= ¢
For L: 0 =a +b -3¢, +1
For T: 0= -2b,—1
1
c, = 0:b,=——
1 1 5
1 1
and, a, = —b,+3¢,-1= = +0-1=—=
2 2

Substituting the values of a,, b, and ¢, in 7;, we get:

1

N
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m,-term:
n, = H2. eh2p2. D
MLT" = 1% (LTH2 . (ML) L
Equating the exponents of M, L and T respectively, we get:

For M. 0= ¢

For L: 0 =a,+b,-3¢,t1
For T: 0 = —2b,

L ¢, = 0:by,=0

and. a, = —b,+3¢c,-1=-1
Substituting the values of a,, b,. and ¢, in 7,. we get:

D
., =H! ¢ p" D=2
5 g.p =
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T,-term:
= H3.83p3.n
M°L°I° = I% (er) 3. (ML . ML T
Equating the exponents of M, L and T respectively, we get:

For M: 0 =c+1
For L: 0 =a;+b;—3¢;—1
For T: 0 =-2b;-1
1
¢; = —1:b; =—§
1 3
and. a; = —-by+3c;+1==-=-3+1=——
2 y
Substituting the values of a;. b;. and ¢, in ;. we get:
1
o N H
Tt3 = H . g A p « u = T
Hp\g
wv . A
= (Multiply and divide by V)
Hp,ng HpV,/gH

I

o k)
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Substituting the values of m,, w, and m; in eqn. (7i7), we get:
¥V D
) ¥ - T =
A JeH H HIV ‘J

or, L = ¢| E? H T,
JeH H HpV
D p
Or. V = f2eH ¢| —, —— ...Proved.
' & +|: H pVH }

(Multiplying or dividing by any constant does not change the character of n-terms).
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» 12.5 MODEL ANALYSIS

The model is the small scale replica of the actual structure or machine. The actual structure or

machine is called Prototype.

» 12.6 SIMILITUDE-TYPES OF SIMILARITIES

1. Geometric Similarity, 2. Kinematic Similarity, and 3. Dynamic Similarity.
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1. Geometric Similarity. The geometric similarity is said to exist between the model and the
prototype. The ratio of all corresponding linear dimension in the model and prototype are equal.
Let L,, = Length of model, b, = Breadth of model,
D,, = Diameter of model, A, = Area of model,
V,, = Volume of model,

and Lp, bp, Dp, Ap, ¥ p = Corresponding values of the prototype.
For geometric similarity between model and prototype, we must have the relation,
LP = bP = DP =j':,r ...(12.6)
L b D

m
where L, is called the scale ratio.
For area’s ratio and volume’s ratio the relation should be as given below :

A L xb,

3 3 3
Yo (ko) (t2) (2] 2

m m

=L xL=L> (12,7




2. Kinematic Similarity. Kinematic similarity means the similarity of motion between model and
prototype. Thus kinematic similarity is said to exist between the model and the prototype if the ratios
of the velocity and acceleration at the corresponding points in the model and at the corresponding

points in the prototype are the same. Since velocity and acceleration are vector quantities, hence not
only the ratio of magnitude of velocity and acceleration at the corresponding points in model and
prototype should be same ; but the directions of velocity and accelerations at the corresponding points
in the model and prototype also should be parallel.
Let V'Pl = Velocity of fluid at point 1 in prototype,

VP:. = Velocity of fluid at point 2 in prototype,

ap = Acceleration of fluid at point 1 in prototype,

ap = Acceleration of fluid at point 2 in prototype, and

Vie, » Vi, » @, »a,, = Corresponding values at the corresponding points of fluid velocity and accel-

myot Ty my
eration in the model.

For kinematic similarity, we must have

V V
R _"h _ V, ..(12.9)
" s
where V| is the velocity ratio.
_ ap ap
For acceleration, we must have —- = —~ =g, LA12.10)
ﬂml ﬂmz

where a, is the acceleration ratio.
Also the directions of the velocities in the model and prototype should be same.
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v a

3. Dynamic Similarity. Dynamic similarity means the similarity of forces between the model and
prototype. Thus dynamic similarity is said to exist between the model and the prototype if the ratios of
the corresponding forces acting at the corresponding points are equal. Also the directions of the
corresponding forces at the corresponding points should be same.

Let (F;)p = Inertia force at a point in prototype,

(F,)p = Viscous force at the point in prototype,
(Fg)p = Gravity force at the point in prototype,
and (Fm (F\)ps (Fp)y, = Corresponding values of forces at the corresponding point in model.
Then for dynamic similarity, we have

(F) _(R)s _ (),
(A USR]

Also the directions of the corresponding forces at the corresponding points in the model and proto-
type should be same.

... = F,, where F| is the force ratio.
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» 12.8 DIMENSIONLESS NUMBERS

Dimensionless numbers are those numbers which are obtained by dividing the inertia force by
viscous force or gravity force or pressure force or surface tension force or elastic force. As this is a
ratio of one force to the other force, it will be a dimensionless number. These dimensionless numbers
are also called non-dimensional parameters. The followings are the important dimensionless numbers :

1. Reynold’s number, 2. Froude’s number,

3. Euler’s number, 4. Weber’s number,

5. Mach’s number.
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12.8.1 Reynold’s Number (R,). Itis defined as the ratio of inertia force of a flowing fluid and
the viscous force of the fluid. The expression for Reynold’s number is obtained as

Inertia force (F)) = Mass X Acceleration of flowing fluid
= p X Volume X M =p X Vo}ume X Velocity
Time Time
=pxAVXV [ Volume per sec = Area x Velocity = A x V}
= pAV? (12.11)
. du
Viscous force (F,) = Shear stress X Area { T=U d_ .. Force =1 x Area}
Y
=TXA
= pﬁ xA:p.ExA ﬁ=£
dy L dy L
By definition, Reynold’s number,
e o F pAV?  pVL
===
Fv H.—X A 1
_VxL VXL { Boy= Kinematic viscnsity}
mip) v p

In case of pipe flow, the linear dimension L is taken as diameter, d. Hence Reynold’s number for
pipe flow,

_Vyxd . p¥d (12.12)

AY LL

R

&
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12.8.2 Froude’s Number (F,). The Froude’s number is defined as the square root of the ratio
of inertia force of a flowing fluid to the gravity force. Mathematically, it is expressed as

where F, from equation (12.11) = pAV?

and  F, = Force due to gravity
= Mass X Acceleration due to gravity
=pxVolumexg=pxL>xg {; Volume = L*)
=pxL*xLxg=pxAxLxg {- L*=A = Area)

2 2
F,= i :\(p‘d‘v :JV i .(12.13)
F, pALg Lg 4Lg
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12.8.3 Euler’s Number (E,). Itis defined as the square root of the ratio of the inertia force of a
flowing fluid to the pressure force. Mathematically, it is expressed as
5= [
Fp
where Fp = Intensity of pressure X Area=p X A
and F,=pAV®

2 2
Eu=JPAV =\/V -l (12.14)
pxA \plp Jplip
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12.8.4 Weber’s Number (W,). Itis defined as the square root of the ratio of the inertia force
of a flowing fluid to the surface tension force. Mathematically, it is expressed as

Weber's Number, W = |—L

where F, = Inertia force = pAV*
and  F_ = Surface tension force
= Surface tension per unit length X Length=0 x L

2 2 2
W, = ‘pfﬂf =\/pr XV (v« A=1%)
oxL oXx L

2 2
=JPL”‘V =J v __v (12.15)

c o/pL Jo/pL
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12.8.5 Mach’s Number (M). Mach’s number is defined as the square root of the ratio of the
inertia force of a flowing fluid to the elastic force. Mathematically, it is defined as

M= Inertia force _ [F
Elastic force F,

where F; = pAV?
and F, = Elastic force = Elastic stress X Area

=KxA=KxL? {» K = Elastic stress}
M- pAV?  fpxI*xV* [Vv? ¥
Vkx? NV kxI*  \kip JKIp
K . . .
But J: = C = Velocity of sound in the fluid
P
M= E .(12.16)

[
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12.9.1 Reynold’s Model Law. Reynold’s model law is the law in which models are based on
Reynold’s number. Models based on Reynold’s number includes :

(i) Pipe flow

(ii) Resistance experienced by sub-marines, airplanes, fully immersed bodies etc.

[R.], =[R ]Pm' [V I Y _ ppVoLy
elm e

Mo Hp
or Pr-Ye -Lp 1 =1 or P V.. L =1
pm Vm*l‘m I'LP l'l'r
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12.9.2 Froude Model Law. Froude model law is the law in which the models are based on
Froude number which means for dynamic similarity between the model and prototype, the Froude
number for both of them should be equal. Froude model law is applicable when the gravity force is
only predominant force which controls the flow in addition to the force of inertia. Froude model law is
applied in the following fluid flow problems :

1. Free surface flows such as flow over spillways, weirs, sluices, channels etc.,

2. Flow of jet from an orifice or nozzle,

3. Where waves are likely to be formed on surface,

4. Where fluids of different densities flow over one another.
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v, Y
(Fe)madef = (Fe)pmrmype or ‘ng Lm = Jg:LP ..(12.18)

If the tests on the model are performed on the same place where prototype is to operate, then g, = gp
and equation (12.18) becomes as

V
i ...(12.19)

L, L

_ ﬁ;::

V.

or % =1
Vo [Ln
Ly
VP LP f LP
—_— — L -.--. — = L
Vm Lm ' { Lm '
where L, = Scale ratio for length
V
—£ =V, = Scale ratio for velocity.
H
V
V—P =V.= L, . .(12.20)

i
Scale ratios for various physical quantities based on Froude model law are :
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(a) Scale ratio for timeL

Length
Velocity '
then ratio of time for prototype and model is

As time =

- JL.

(b) Scale ratio for acceleration

Acceleration = ;

V. 1 V,
XL=[ x— v L= L]
VP ‘JE { Vm \/_F

(1221
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1 Vp T,
_ % o L= L, =L
VL x 7 v
=1. (12.22)
(c) Scale ratio for discharge
3
O=Axv=IxL_-L
Tr T
fL3‘1
0p \T) L) (T 3 | 25
Q,= P:f, 3\”: Pl x|=2|=L"x—=L" ..(12.23)
Qm L_ Lm TP ‘JE
T

\
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(d) Scale ratio for force

As Force = Mass x Acceleration = pL® X % = pL?. % V= pL2V2
F, LAV3 Y
. Ratio for force, F = B Pr z ’;:ppx( ”} x(-—”) ;
Fm p m Lm Vm p m Lm Vm
If the fluid used in model and prototype is same, then
p
i =1 or Pp=Pm

2 2
and hence F, = &”—] X (%] =L%x (L] )2 =L>.L=L> .(12.24)

m
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(e) Scale ratio for pressure intensity

2172
As p=F0rcc=pLV 512

Area I
V:
Pressure ratio, Pr= Pr _Pe P:
Pn PV
If fluid is same, then Pp=Pm

v (v,
P P
— ) :L,
br Ve [V] '

i

(f) Scale ratio for work, energy, torque, moment etc.
Torque = Force x Distance = F' X L

#* FxL
Torque ratio, T*= Tp == ( )r
T, (FxL)

3 4
=1F“,::'<ZJLJ,=;‘LJr XL,:LF.

(g) Scale ratio for power
As Power = Work per unit time
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_ FxL
T
Fo X Lp
_ P, T, _F L, 1
. Power ratio, Pf:Pm_meLm —FMKLNXE
T, T,
=F,.L .i=L,3.L L3 (12.27)
T, L,
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Problem 12.21 In the model test of a spillway the discharge and velocity of flow over the model
were 2 m’/s and 1.5 m/s respectively. Calculate the velocity and discharge over the prototype which is
36 times the model size.

Solution. Given :

Discharge over model, Oy =2 m*/s
Welocity over model, V,=15m/s
Linear scale ratio, L, =36.

For dynamic similarity, Froude model law is used. Using equation (12.20), we have
= JL, =36 =60

VP = Velocity over prototype = V,, x 6.0 = 1.5 % 6.0 = 9 m/s. Ans.
F{'.II.' discharge, using equation (12.23), we get

O

m

Qp= 0, % (36)"° = 2 x 36> = 15552 m’/s. Ans.

- er.j — [3&]25
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¥l (o2 TN B 1 I G
Problem 12.15 A pipe of diameter 1.5 m is required to transport an oil of sp. gr. 0.90 and viscosity
3x107 poise at the rate of 3000 litre/s. Tests were conducted on a 15 cm diameter pipe using water at
20°C. Find the velocity and rate of flow in the model. Viscosity of water at 20°C = 0.01 poise.
Solution. Given :

Dia. of prototype, Dp=15m

Viscosity of fluid, Up =3 x 107% poise

Q for prototype, Qp = 3000 lit/s = 3.0 m?/s

Sp. gr. of oil, Sp=0.9

.. Density of oil, pp=Spx 1000 = 0.9 x 1000 = 900 kg/m*

Dia. of the model, D,=15ecm=0.15m

Viscosity of water at 20°C = .01 poise = 1 x 1072 poise or ,, = 1 x 107 poise

Density of water or p,. = 1000 kg/m®.
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- T R L

For pipe flow, the dynamic similarity will be obtained if the Reynold’s number in the model and
prototype are equal

Hence using equation (12.17), PVl _ PeVeDr [For pipe, linear dimension is D}
I'I';Ir:l I“I'P

Vo _Pe Dp 1,
VF Pm Drrr He
-2
_ 900 » 1.5 xlxlﬂ_z _ 900 xl{}xl=3‘ﬂ
1000 015 3x10 1000 3

But _ Rate of flow in prototype 3.0 3.0
F - — -
Area of prototype n DY ks 1.5)2
(o,) o)
= 30x4 607 mis
mx2.25

V,=30xV;=3.0x1.697 = 5.091 m/s. Ans.
Rate of flow through model, @, =A, XV, = E (D) xV, = % (0.15)* x 5.091 m’/s

= (.0899 m’/s = 0.0899 x 1000 lit/s = 89.9 lit/s. Ans.
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10.2. REYNOLDS EXPERIMENT

Osborne Reynolds in 1883, with the help of a simple experiment (see Fig. 10.1). demonstrated
the existence of the following two types of flows:

====4—Tank containing dye

- — Cnnstant head tank

——=-—=Z=Z—=-zZzZzz=z=1H Glass tube
:::EEEEEEEEE{ D}ref']ammt
:_:’q.;ai;: —-------- h Regulating valve
C—_____—---Z--Z-_"}

Fig.10.1. Reynolds apparatus.

1. Laminar flow (Reynolds number. Re < 2000)
2. Turbulent flow (Reynolds number, Re = 4000)
(Re between 2000 and 4000 indicates fransition from laminar to turbulent flow)
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Observations made:

1. When the velocity of flow was low. the dye remained in the form of a sfraight and stable
filament passing through the glass tube so steadily that it scarecely seemed to be in motion.
This was a case of laminar flow as shown in Fig. 10.2 (a).

2. With the increase of velocity a critical state was Dye ffa ment
reached at which the dye filament showed irregulari- f v |
ties and began to waver (see Fig. 10.2 b). This shows ¢ g

that the flow is no longer a laminar one. This was a
transitional state.

3. With further increase in velocity of flow the
fluctuations in the filament of dye became more

(a) Wavy filament

intgnse and 111tiqlately the dye diffused over the (b) Diffused filament
entire cross-section of the tube, due to the inter- /
mingling of the particles of the flowing fluid. This :{’ﬁi

was the case of a turbulent flow as shown in Fig. =

10.2 (c). ©)

Fig. 10.2. Appearance of dye filament in
(a) laminar flow, (b) transition,
and (c) turbulent flow.

On the basis of his experiment Reynolds discovered
that:
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(1) In case of laminar flow: The loss of pressure head =« velocity.
(if) In case of turbulent flow: The loss of head is approximately « /2
[More exactly the loss of head o V" where n varies from 1.75 to 2.0]

Fig. 10.3 shows the apparatus used by Reynolds for estimating the loss of head in a pipe by
neasuring the pressure difference over a known length of the pipe.

(1) The velocity of water in the pipe was determined by measuring the volume of water (Q) col-

lected in the tank over a known period of time (¥ = %, where A is the area of cross-section

of the pipe.)
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(if) The velocity of flow (¥) was changed and corresponding values of hf (loss of head) were

obtained.

(ii1) A graph was plotted between ¥V (velocity of flow) and
he(loss of head). Such a graph is shown in Fig. 10.4.
It may be seen from the graph that:

(a) At low velocities the curve is a straight line,
indicating that the hf (loss of head) is directly
proportional to velocity—the flow is laminar
(or viscous),

(b) At higher velocities the curve is parabolic: in
this range h.a V"', where the value of n lies
between 1.75 to 2.0 — the flow is turbulent.

(¢) Inthe intermediate region, there is a transition
zone. This is shown by dotted line.

hy

Turbulent flow

(High velocities)
hea V'

,’ Transition
zone

Laminar flow
(Low velocities)

ho V

V—»
Fig.10.4
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i.e. Reynolds number Re = pT
It may also be expressed as: i
Re = Q
v
where, v = Kinematic viscosity (= EJ
P

when, Re < 2000 ... the flow 1s laminar (or viscous)

Re = 4000 ... the flow is turbulent.

Re  between 2000 and 4000 ... the flow is unpredictable.



