Department of Civil Engineering

Course outcomes of various courses

Engineering Graphics (ECE 151/152) (1st sem)

- CO 1: Use various scales for drawing of maps and construct regular figures
- CO 2 Draw Orthographic projections of Lines, Planes, and Solids
- CO 3: Draw projections of lines, planes, solids, isometric projections and sections of solids including Cylinders, cones, prisms and pyramids using AutoCAD
- CO 4: Draw Sections of various Solids including Cylinders, cones, prisms and pyramids
- CO 5: Construct Isometric Scale, Isometric Projections and Views

Environment and Ecology (ECE 153/154) (2ndsem)

- CO 1: Identify environmental problems arising due to engineering and technological activities and the science behind those problems.
- CO2: Estimate the population economic growth, energy requirement and demand.
- CO3: Analyze material balance for different environmental systems.
- CO4: Realize the importance of ecosystem and biodiversity for maintaining ecological balance.
- CO5:Identify the major pollutants and abatement devices for environmental management and sustainable development.

3rd Semester

Surveying-I (ECE 253) (Theory and Lab)

- CO1: To analyze the basic concepts of surveying, identifying errors and measurement of distances.
- CO 2: To measure angles and directions using compass and theodolite surveying.
- CO 3: To apply the concepts of traversing and tacheometry.
- CO4: To carry out measurements of elevation and contouring.
- CO 5: To carry out plane table surveying and analyze topographical maps
- CO 6: Carry out alignment and surveys (measurement of angles, contouring, plane tabling etc) based on the theory course for actual field problems.

Building Material and Construction (ECE 251), (Theory and BM Lab)

- CO1 Identify and characterize various building materials
- CO2 Analyze cement, mortar, concrete and admixtures
- CO3 Analyze building bye-laws and brick masonry
- CO4 Analysis of building construction foundation, floor, roof, slab and other building utilities-lift and escalators.
- CO5 Analyze doors, windows and finishes in building.
- CO6: Carryout testing on various building materials (cement, aggregates, bricks,
- steel) and analyze their properties for quality control in construction projects

Strength of Materials (EME 201)

CO1: Analyze and determine stresses in beams under various conditions (shear, bending, tension, compression)

CO2: To analyze and determine stresses and deflections in beams for unsymmetrical conditions

CO3: Analyze the problems of springs (helical and leaf) subjected to various conditions.

CO4: Analyze and evaluate stresses in columns and cylinders under various conditions

CO5: Analyze and determine stress and strain in thin and thick cylinders

Mathematics-III (BMA 201)

- CO 1: Apply various transforms to solution of engineering problems
- CO 2: Apply complex variables, conformal mapping and transformation to engineering problems
- CO 3: Carry out integration of complex mathematical functions
- CO 4; To apply concepts of curve fitting and probability for solution of engineering problems
- CO 5: Apply statistical methods and related tests for solution of engineering problems

Engineering Geology (ECE 255) (Theory and Lab)

- CO 1: Conceptual knowledge of earth science, minerals and their properties
- CO 2: Identify various types of rocks and study various properties
- CO 3: Analyze and locate dip and fault in various types of rocks formations
- CO 4: Apply theoretical knowledge of earthquake, seismic zones and aquifers for solution of practical Civil Engineering problems
- CO 5: Perform geological investigations for identifying site selection for dams, tunnels, bridges, highways etc.
- CO 6: Identify various rocks and minerals using megascopic study, find dip and fault, and use new techniques (seismic refraction, electrical resistivity) for soil exploration.

4thSemester

Fluid Mechanics (ECE 252) (Theory and Lab)

- CO1: Analyze fluids properties- viscosity, surface tension, capillary and compute hydrostatic and hydrodynamic forces and pressure measuring devices.
- CO 2: Analyzing concept of control volume, eulerian and lagrangian approach and free and forced vortex.
- CO 3: Analyze and apply the fluid dynamics, conservation laws and dimensional analysis to solve fluid problems.
- CO4:Apply laminar and turbulent flow theory for solution to real life field problems.
- CO-5: Analyze losses in pipes, analysis of water supply systems and boundary layer theory.
- CO-6 Demonstrate experiments related to fluid statics, dynamics, pipe flow and boundary layer and develop new experiments

Structural Analysis-I (4thsem) (ECE 254)

- CO1 Analysis of determinacy of structures, influence lines and rolling/moving loads.
- CO2 Applythe concept of strain energy and energy theorem
- CO 3 Analyze the arches and drawing of influence lines.
- CO 4Analyze suspension bridges and cable structures.
- CO5 Apply Plastic analysis of structures.

Surveying-II (ECE 258) (Theory and Lab)

- CO1 Analysis of the procedure of Triangulation and identify errors
- CO2 Analyze the adjustments and computation of errors and normal equations
- CO 3: Analysis of various curves and their methods of setting and study of field astronomy.
- CO 4 Analyze and apply the concept of photogrammetry and remote sensing.
- CO5: Analysis of the principle of GIS, GPS their applications in Civil Engineering.
- CO 6: Carry out field surveys (triangulation, traversing, astronomy) and apply new tools (GIS, GPS) for Civil Engineering applications

Computer Oriented Numerical Methods (BMA 206), (Theory and NT Lab)

- CO 1: Apply nonlinear Equations and Simultaneous Linear Equations for solution of Civil Engineering problems
- CO 2: Apply concepts of Interpolation, Differentiation and Integration for solution of engineering problems
- CO 3: Carry out numerical solution of Ordinary Differential Equations
- CO 4: Solve Initial and Boundary value problems and apply them for engineering applications
- CO 5: Write and solve equations using Finite Element Method
- CO 6: Write and run computer programs using various numerical techniques for solution of engineering problems (heat equation, laplace equation, wave equation etc)

Cyber Security(ECS 206)

- CO 1: Understand information, information systems, information security, Cyber Security and Security Risk Analysis.
- CO 2: Understand and apply application security, data security, security technology, security threats from malicious software
- CO 3: Understand the concepts of security threats to e-commerce applications such as electronic payment system, e-Cash, Credit/Debit Cards etc.
- CO 4: Understand and apply Information Security Governance & Risk Management, Security of IT Assets and Intrusion Detection Systems.
- CO 5: Understand various types of Security Policies, Cyber Ethics, IT Act, IPR and Cyber Laws in India.

5th semester

HHM/C (ECE 351)(Theory and Lab)

- CO1: To analyze different types of flows and velocities in Open Channel Flow.
- CO 2: To analyze depth and energy relationship in Open Channel Flow and apply concepts of Gradually Varied Flow
- CO 3: To analyze Rapidly Varied Flow
- CO4: To carry out calculation of Impact of Jet and turbines with hydraulics of mobile bed channels.
- CO 5: To analyze centrifugal pumps and forces on submerged bodies.
- CO 6: To analyze and develop models for real life open channel problems

SA-II (ECE 355), (Theory and Lab)

- CO 1: Analyze propped cantilever and continuous beams
- CO 2: Analyze structure by slope deflection and approximate methods
- CO 3: Analyze continuous beams and rigid frames using Moment distribution and Kani's method
- CO 4: Analyze indeterminate structures and redundant trusses
- CO 5: Apply force and displacement method for analysis of beams, trusses and frames
- CO 6: Demonstrate application of Structure analysis for analyzing beams, frames, arches, trusses and bridges etc

Design of Concrete structures-I (ECE 256), (Theory and Lab)

- CO1 Analysis of the properties of concrete and steel
- CO 2 Analysis of various types of special concrete
- CO 3 Introduction to loads, working stress method and design of beams.
- CO 4 Limit state design of singly and doubly reinforced and flanged beams
- CO 5 Design of curved and continuous beams
- CO6 Demonstrate various quality control tests on concrete and use NDT for structures

Transportation Engineering-I (ECE 359), (Theory and Lab)

- CO1 Planning and geometric design of highway and design of horizontal and vertical curves
- CO2Carry out traffic studies and design of traffic signals at Intersections
- CO 3 Analyze various types of pavement materials
- CO 4 Design of flexible and rigid pavements.
- CO5 Analyze various methods of road construction
- CO6 Demonstrate various quality control test on aggregates and bitumen and carryout traffic studies for site conditions

Geotech Engineering-I (ECE 353), (Theory and Lab)

- CO 1 Identify Physical properties and characterize soil
- CO 2Classify soil and compute seepage through soil for field conditions
- CO 3Carryout seepage analysis and locate seepage lines in earth dams

- CO 4Analyze stress distribution in soils and estimate contact pressure over base of footing
- CO 5Identify shear strength parameters and stability of slopes for field conditions
- CO6 Demonstrate geotechnical investigations for real life field problems

Design of Concrete Structures-II (ECE 357)

- CO1 Able to design one way and two way slabs
- CO2 Able to design flat and circular slabs
- CO 3: Able to design Columns under axial and bending
- CO 4: Able to design Shallow footing-isolated and combined footing and understand the concept of design of deep foundation
- CO 5: Analyze simple pre-stressed rectangular and flanged sections

6th Semester

HIE (ECE 356)

- CO 1 Analyze Precipitation and its abstractions and forecast rainfall.
- CO 2 Analyze streamflow and runoff; develop rainfall-runoff models and hydrographs
- CO 3: Estimate the water requirement of various crops and assess irrigation efficiency
- CO4: Design canals using graphical and analytical methods and develop methods for control of water logging
- CO5: Analyze the groundwater yield and carryout flood forecasting and routing for real life field problems.

Environmental Engineering-I (ECE 358) (Theory and Lab)

- CO1 Identification of water sources and assessing the water demand for planning and design of water supply systems
- CO2 Planning and design of conduits for transmission of water from source to treatment plants
- CO3: Design of various units of water treatment plants and study of new purification methods
- CO4: Identification/Planning and design of water supply systems
- CO5: Planning and design of Plumbing in residential buildings, preparation of DPR for water supply systems.
- CO6: Demonstrate the physical, chemical and bacteriological tests on water samples

Geotechnical Engineering-II (ECE 360)

- CO1 Analysis of the concept of soil improvement, compaction and earth pressure theories for solution of field problem.
- CO2 Application of soil exploration in field
- CO3 Estimate the bearing capacity for shallow foundations.
- CO4 To study, analyze and design pile foundations
- CO5 Analysis of the concept, stability and design of retaining walls.

Transportation Engineering-II (ECE 354)

- CO1 Gain knowledge about Indian Railways, tracks, ballast and various gauges
- CO2 Analyze the track geometry and design curves
- CO3 Gain knowledge about laying of tracks, yards, railways stations,
- CO4 Apply the concept of airport planning and design for runway design
- CO5 Gain knowledge about planning and construction of tunnels, docks and harbour

Design of Steel Structures (ECE 352)(Theory)

- CO1: To analyze load combinations, design philosophies and design of fasteners
- CO 2: To carry out designing of compression members
- CO 3: To carry out design of Tension members and column bases
- CO4: To carry out design of beams and gantry girders
- CO 5: To analyze wind loads and designing of industrial buildings with focus on roof trusses.
- CO 6: Design, Drawing and detailing of RCC and steel structures

7th Semester

Estimation and Construction Management (ECM) (ECE 401)

- CO1 Prepare quantity estimates for buildings and roads
- CO2 Carry out rate analysis and prepare specifications for various civil construction items
- CO 3 Analyze contracts and carry out valuation of civil infrastructure.
- CO 4 Applying techniques of construction management and apply PERT and CPM to construction projects.
- CO 5Application of various construction equipment- earth moving, drilling etc.

Environmental Engineering-II (ECE 403) (Theory and Lab)

- CO1: To analyze various characteristics of wastewater and factors of effluent disposal
- CO 2: Analysis and design of wastewater collection system
- CO 3: Designing of wastewater treatment systems
- CO4: To analyze the concepts of secondary and tertiary treatment of sewage & sludge treatment
- CO 5: Analysis of solid waste management and air pollution control.
- CO 6: Analyze and demonstrate the quality of wastewater sample and develop related field investigations

Hydraulic Structures (ECE 362)

- CO1 Planning and hydraulic design of diversion headworks, canal headwork and river training works
- CO2 Planning and design of canal regulation works-falls, outlets and cross drainage works
- CO3 Understand the planning and design of dams and reservoirs and the concept

of flood routing

- CO 4 Analysis and design of gravity and earth dams
- CO 5 Understand the hydraulic design of spillways and assessment of hydropower potential

Transportation System Planning (ECE 459), Elective I

- CO 1 Gain understanding of transportation system planning
- CO 2 Gain awareness about various transportation systems and carry out traffic flow analysis
- CO 3: Estimate travel demand using quantitative and regression methods
- CO 4: Evaluate transport planning proposals based on technical and financial criteria
- CO 5: Plan and design various Transportation facilities such as pedestrian, bicycle, parking, terminal and understand use of IT in Transportation

Elective -II

Advanced Concrete Technology (ECE 464)

- CO 1: To understand the fundamentals of concrete technology-mixing, curing, admixtures for improving the performance of concrete
- CO 2: Learn about concept of durability in concrete with focus on physically and chemically aggressive environment..
- CO 3: Learn the methods for special concrete such as mass, self- compacting, light weight, fibre reinforced, flash, polymer, high performance etc.
- CO 4: Learn special construction methods such as roller compaction, shotcreting, antiwash out concreting etc.
- CO 4: Learn repair, rehabilitation and life cycle costing of structures

Practical Training (ECE 461)

- CO1 :Gain understanding about various organizations/industry involved in Civil Engineering profession.
- CO 2: Adjust to the site conditions of Civil Engineering Construction projects
- CO3: Learn about various works at site and try to relate with the subjects studied up to 3rdyear.
- CO 4: Prepare a technical Report and learn editorial skills, reference writing skills etc.
- CO 5: To develop confidence for speaking and replying related queries before an audience

Seminar/Colloquium (ECE 471)

- CO1: To carry out literature review pertaining to a given topic related to Civil Engineering
- CO2: To demonstrate a particular topic of civil engineering and its details
- CO3: To develop confidence for speaking and replying related queries before an audience
- CO4: Develop technical writing skills and prepare a Seminar report
- CO 5: Demonstrate editorial skills, reference writing skills etc.

8th semester

Elective -III

Traffic Engineering (ECE 460)

- CO 1: Analyze the traffic characteristics under heterogeneous conditions.
- CO 2: Plan and design of capacity of highway. Transit system and use of Queuing Theory
- CO 3: Analysis of traffic volume, speed, delay, origin and destination, accident, capacity and parking studies
- CO 4: Design of traffic signals and street lightings
- CO 5: Design of intersections and parking facilities

Elective -IV

Structural Fire Engineering (ECE 463)

- CO 1: Gain understanding about fire loads and ventilation effects.
- CO 2: Gain understanding about fire resistant tests.
- CO 3: Gain knowledge about fire safety- protection for openings, material selection and site planning.
- CO 4: Gain knowledge about fire protection in tall buildings
- CO 5: Gain knowledge about architectural fire safety measures

B.Tech Project (ECE 498)

- CO 1: Review the available literature on the chosen problem and identify gaps
- CO 2: Formulate the methodology to solve the identified problem
- CO 3: Able to collect, process and analyze primary and secondary data
- CO 4: Apply the principles, tools and techniques to solve the problem
- CO5: Develop technical writing skills and prepare a Seminar report thereby demonstrate editorial skills, reference writing skills etc.
- CO 6 Work in a team to select a problem for project work
- CO7: To develop confidence for speaking and replying related queries before an audience