Course Curriculum and Detailed Syllabi

For

Master of Computer Applications (MCA)

Effective for

Students admitted in the

Academic Session 2017-18 onwards

Department of Computer Science & Engineering

School of Engineering

Harcourt Butler Technical University, Kanpur

Kanpur-208002

(Approved in the Meeting of the Board of Studies dated 18.06.2017)
1. About the Department

The Department of Computer Science & Engineering was established in 1984 with a 4-year B. Tech. program in Computer Science & Engineering having an intake of 30 students. A 3-year Post Graduate Program, Master of Computer Application (MCA), with an intake of 60 students was introduced in 1987. Under IT task force recommendations, B. Tech. Information Technology Program with an intake of 60 students was introduced in the year 2000. Currently, the department is running B. Tech. Computer Science & Engineering, B. Tech. Information Technology and MCA with students’ intake of 60, 30 and 60 respectively. One of the youngest, but among the most efficient departments, it is reputed for producing the best quality software engineers who serve in leading companies in India and abroad. The students have an in-depth exposure to computing environment consisting of state-of-the-art machines in different laboratories. In order to identify Industrial projects for the students and to expose them to the industrial environment, the department has continuous interaction with the Industries.

2. Vision

To excel in Computer Science & Engineering education, research, innovation and global employability.

3. Mission

1. Achieve academic excellence in Computer Science & Engineering through an innovative teaching-learning process.
2. Inculcate technical competence and collective discipline in students to excel for global employability, higher education and societal needs.
3. Establish focus research groups in leading areas of Computer Science & Engineering.

4. Program Educational Objectives (PEOs)

1. To inculcate professional culture amongst the students to take up technical/ professional positions for design, development, and problem solving in software industries and R&D organizations.
2. To prepare students as technical, ethical, responsible solution providers and entrepreneurs in various areas of computer applications.
3. To provide the necessary competence and capability in students to pursue higher studies in Institutions of International / National repute.
4. To provide analytical and technical ability to develop and innovate software systems and technologies in the leading areas of computer applications.

5. Program Outcomes (POs)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. **Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

6. **Program Specific Outcomes (PSOs)**

 By the completion of B. Tech. Computer Science & Engineering program, the students will achieve the following program specific outcomes:-

 1. The ability to understand, analyse and develop applications in the field of algorithms, system software, databases, web design, networking and artificial intelligence.
 2. The ability to apply standard practices and strategies in software project development using suitable programming environment to deliver quality products.
 3. The ability to employ modern computer languages, environments, and platforms in creating innovative career paths, to be an entrepreneur, and a zest for higher studies.
 4. The ability to use research based knowledge to do literature survey, formulate problem, design & carry-out experimentation, analyse & interpret experimental results for complex research problems.

7. **Consistency/Mapping of PEOs with Mission of the Department**

<table>
<thead>
<tr>
<th>PEO Statements</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEO1: To inculcate professional culture amongst the students to take up technical/ professional positions for design, development, and problem solving in software industries and R&D organizations.</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>PEO2: To prepare students as technical, ethical, responsible solution providers and entrepreneurs in various areas of Computer Science & Engineering.</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
PEO3: To provide the necessary competence and capability in students to pursue higher studies in Institutions of International / National repute.

<table>
<thead>
<tr>
<th>Course Component</th>
<th>% of total number of credits of the Program</th>
<th>Total number of contact hours</th>
<th>Total number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Sciences (BSC)</td>
<td>10.83</td>
<td>138</td>
<td>12</td>
</tr>
<tr>
<td>Humanities and Social Sciences (HMSC)</td>
<td>8.33</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Program Core (PCC)</td>
<td>55.00</td>
<td>75</td>
<td>66</td>
</tr>
<tr>
<td>Program Electives (PEC)</td>
<td>10.00</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Project(s) (PRC)</td>
<td>16.66</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>Total Credits</td>
<td>100</td>
<td>151</td>
<td>120</td>
</tr>
</tbody>
</table>

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) “-”: No correlation

8. **Components of the curriculum**
(Program curriculum grouping based on course components)
Department of Computer Science & Engineering

Course Structure (Semester wise)

Master of Computer Applications

(Applicable w.e.f. the Session 2017-18)

Year I, Semester-I

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Course</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>ESM</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCC</td>
<td>ECA-401</td>
<td>Computer Concepts & Programming in C</td>
<td>5 (3-1-2)</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PCC</td>
<td>ECA-403</td>
<td>Computer Organization</td>
<td>4 (3-1-0)</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>HSMC</td>
<td>HHS-401</td>
<td>Accounting & Financial Management</td>
<td>4 (3-1-0)</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>HSMC</td>
<td>HHS-403</td>
<td>Professional Communication</td>
<td>3 (2-0-2)</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BSC</td>
<td>BMA-401</td>
<td>Discrete Structures</td>
<td>4 (3-1-0)</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 20

Year I, Semester-II

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Course</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>ESM</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCC</td>
<td>ECA-402</td>
<td>Data Structures Using C</td>
<td>5 (3-1-2)</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PCC</td>
<td>ECA-404</td>
<td>Operating Systems</td>
<td>4 (3-1-0)</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BSC</td>
<td>BMA-402</td>
<td>Computer Oriented Numerical & Statistical Techniques</td>
<td>4 (3-0-2)</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>HSMC</td>
<td>HHS-402</td>
<td>Organisational Structure & Human Resource Management</td>
<td>3 (3-0-0)</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BSC</td>
<td>ECE-404</td>
<td>Environmental Science & Ethics</td>
<td>4 (3-1-0)</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 20
Year II, Semester-I

<table>
<thead>
<tr>
<th>Sr.</th>
<th>Course</th>
<th>Course No.</th>
<th>Course Name</th>
<th>Credits</th>
<th>Details of Sessional Marks</th>
<th>ESM</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Type</td>
<td>Code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCC</td>
<td>ECA-501</td>
<td>Software Engineering</td>
<td>5 (3-1-2)</td>
<td>15</td>
<td>20 (10T+10P)</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>PCC</td>
<td>ECA-503</td>
<td>Design & Analysis of Algorithms</td>
<td>4 (3-1-0)</td>
<td>30</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>PCC</td>
<td>ECA-505</td>
<td>Database Management Systems</td>
<td>4 (3-0-2)</td>
<td>15</td>
<td>20 (10T+10P)</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>PCC</td>
<td>ECA-507</td>
<td>E-Commerce</td>
<td>3 (3-0-0)</td>
<td>30</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>PCC</td>
<td>ECA-509</td>
<td>Internet & Java Programming</td>
<td>4 (3-0-2)</td>
<td>15</td>
<td>20 (10T+10P)</td>
<td>50</td>
</tr>
</tbody>
</table>

Total Credits 20

Year II, Semester-II

<table>
<thead>
<tr>
<th>Sr.</th>
<th>Course</th>
<th>Course No.</th>
<th>Course Name</th>
<th>Credits</th>
<th>Details of Sessional Marks</th>
<th>ESM</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Type</td>
<td>Code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCC</td>
<td>ECA-502</td>
<td>Object Oriented System Modeling</td>
<td>5 (3-1-2)</td>
<td>15</td>
<td>20 (10T+10P)</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>PCC</td>
<td>ECA-504</td>
<td>Computer Graphics & Animation</td>
<td>4 (3-0-2)</td>
<td>15</td>
<td>20 (10T+10P)</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>PCC</td>
<td>ECA-506</td>
<td>Artificial Intelligence</td>
<td>3 (3-0-0)</td>
<td>30</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>PCC</td>
<td>ECA-508</td>
<td>Computer Networks</td>
<td>4 (3-1-0)</td>
<td>30</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>PEC</td>
<td>ECA-</td>
<td>Elective-I</td>
<td>4 (3-1-0)</td>
<td>30</td>
<td>20</td>
<td>-</td>
</tr>
</tbody>
</table>

Total Credits 20
Year III, Semester-I

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Type</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>ESM</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCC</td>
<td>ECA-601</td>
<td>Software Project Management</td>
<td>4 (3-0-2)</td>
<td>15</td>
<td>20 (10T+10P)</td>
</tr>
<tr>
<td>2</td>
<td>PCC</td>
<td>ECA-603</td>
<td>Data Warehousing & Mining</td>
<td>4 (3-0-2)</td>
<td>15</td>
<td>20 (10T+10P)</td>
</tr>
<tr>
<td>3</td>
<td>PCC</td>
<td>ECA-605</td>
<td>Mobile Computing</td>
<td>4 (3-1-0)</td>
<td>30</td>
<td>20 -</td>
</tr>
<tr>
<td>4</td>
<td>PEC</td>
<td>ECA- ECA-</td>
<td>Elective-II</td>
<td>4 (3-1-0)</td>
<td>30</td>
<td>20 -</td>
</tr>
<tr>
<td>5</td>
<td>PEC</td>
<td>ECA- ECA-</td>
<td>Elective-III</td>
<td>4 (3-1-0)</td>
<td>30</td>
<td>20 -</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 20

Year III, Semester-II

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Type</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>ESM</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PRC</td>
<td>ECA-698</td>
<td>Project</td>
<td>20</td>
<td>40</td>
<td>40 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 20

Elective-II

1. Cloud Computing (ECA-611)
2. Machine Learning (ECA-613)
3. Digital Image Processing (ECA-615)
4. Big Data Analytics (ECA-617)

Elective-III

1. Advanced Database Management Systems (ECA-631)
2. Software Quality Engineering (ECA-633)
3. Cryptography & Network Security (ECA-635)
4. Soft Computing (ECA-637)
Detailed Syllabus

1st Year
COMPUTER CONCEPTS & PROGRAMMING IN ‘C’ (ECA-401)

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Prerequisite: NIL

Course Content:

Unit-1:
Introduction to Computers: Computer hardware Components, peripherals and their functions, Number Systems and conversion methods, Concept of an algorithm; termination and correctness. Algorithms to programs: specification, top-down development and stepwise refinement, Introduction to programming environment, use of high level programming language for the systematic development of programs. Introduction to the design and implementation of correct, efficient and maintainable programs, Structured Programming, Trace an algorithm to depict the logic.

Unit-2:
Basic operating System Concepts: Introduction of MS-DOS, WINDOWS, and LINUX Operating Systems, Functional Knowledge of these operating systems, Introduction of basic commands of LINUX and Editors, Managing Files and Directories in LINUX, Programming Environment in LINUX, Writing and executing programs in LINUX.

Unit-3:
Programming in C: History, Introduction to C Programming Languages, Structure of C programs, compilation and execution of C programs, Debugging Techniques, Data Types and Sizes, Declaration of variables, Modifiers, Identifiers and keywords, Symbolic constants, Storage classes (automatic, external, register and static), Enumerations, command line parameters, Macros, The C Preprocessor.

Unit-4:
Operators: Unary operators, Arithmetic & logical operators, Bit wise operators, Assignment operators and expressions, Conditional expressions, Precedence and order of evaluation. Control statements: if-else, switch, break, and continue, the comma operator, goto statement. Loops: for, while, do-while. Functions: built-in and user-defined, function declaration, definition and function call, and parameter passing: call by value, call by reference, recursive functions, Multi-file programs. Arrays: linear arrays, multidimensional arrays, passing arrays to functions, Arrays and strings.

Unit-5:
Structure and Union: definition and differences, self-referential structure. Pointers: value at (*) and address of (&) operator, pointer to pointer, Dynamic Memory Allocation, calloc and malloc functions, array of pointers, function of pointers, structures and pointers. File Handling in C: opening and closing a data file, creating a data file, read and write functions, unformatted data files.

Lab Work:

1. Write C program to find largest of three integers.
2. Write C program to check whether the given string is palindrome or not.
3. Write C program to find whether the given integer is
(i). a prime number
(ii). an Armstrong number.
4. Write C program for Pascal triangle.
5. Write C program to find sum and average of n integer using linear array.
6. Write C program to perform addition, multiplication, transpose on matrices.
7. Write C program to find Fibonacci series of iterative method using user-defined function.
8. Write C program to find factorial of n by recursion using user-defined functions.
9. Write C program to perform following operations by using user defined functions:
 (i) Concatenation
 (ii) Reverse
 (iii) String Matching
10. Write C program to find sum of n terms of series: $n - n^2/2! + n^3/3! - n^4/4! + \ldots \ldots ..
11. Write C program to interchange two values using
 (i). Call by value.
 (ii). Call by reference.
12. Write C program to sort the list of integers using dynamic memory allocation.
13. Write C program to display the mark sheet of a student using structure.
14. Write C program to perform following operations on data files:
 (i) Read from data file.
 (ii) Write to data file.
15. Write C program to copy the content of one file to another file using command line argument.

Text and References Books:

3. Peter Norton’s, “Introduction to Computers”, TMH
6. E. Balagurusamy, “Programming in ANSI C”, TMH

Course Outcomes:

1. Identify the parts of the computer system and explain the functioning of its components along with the process of problem solving. (Remember, Understand)
2. Design an algorithmic solution for a given problem and translate it into a program. (Design)
3. Understand different operating systems, related concepts and their functions. (Understand)
4. Use the appropriate control statements to solve the given problem. (Apply)
5. Implement different Operations on arrays and use functions to solve the given problem. (Apply)
6. Understand pointers, structures and unions & Implement file Operations in C programming. (Understand, Apply)
COMPUTER ORGANIZATION (ECA-403)

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCC</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisite: NIL

Course Content:

Unit-1:

Unit-2:

Unit-3:
Memory Organization: Memory Hierarchy, Main memory (RAM/ROM chips), Auxiliary memory, Associative memory, Cache memory, Virtual Memory, Memory Management Hardware, hit/miss ratio, magnetic disk and its performance, magnetic Tape etc.

Unit-4:

Unit-5:
Process Organization: Basic Concept of 8-bit micro Processor (8085) and 16-bit Micro Processor (8086), Assembly Instruction Set, Assembly language program of (8085): Addition of two numbers, Subtraction, Block Transfer, find greatest number, Table search, Numeric Manipulation, Introductory Concept of pipeline, Flynn’s and Feng’s Classification, Parallel Architectural classification, Concept of Pipelining and Multi-Core Architecture.

Text and References Books:

Course Outcomes:

1. Understand Number systems, Logic Gates, Boolean algebra, Design of Combinational and sequential circuits. (Understand)
2. Understand Von Neumann architecture, instruction cycle and the concept of Hardwired and Micro programmed control unit, addressing modes, register organization. (Understand)
3. Apply the concepts of memory organization in calculating hit-miss ratio and access time of magnetic disks. (Apply)
4. Understand the working of various I/O devices, buses, interrupt and interfaces etc. (Understand)
5. Understand the basics of pipelining and Multicore architecture. (Understand)
6. Design and implement systems using 8085 and 8086 microprocessor with the knowledge of pin diagram, interrupts and instruction format by writing assembly language programming. (Analyze)

ACCOUNTING & FINANCIAL MANAGEMENT (HHS-403)

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSMC</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisite: NIL

Course Content:

Unit-1: Introduction to Accounting
Concept and objectives of accounting and bookkeeping; financial and management accounting; ledger and ledger page, ledger entries: debit and credit entries; double entry principle; trial balance and its use; journal and journal entries; accounting of sole proprietorship, partnership and limited companies.

Unit-2: Types of Final Accounts
Trading account and profit-loss account; closing of ledger accounts; and balance sheet of companies.

Unit-3: Cost Accounting
Classification of costs: primary and secondary costs; determination of unit cost; methods of charging overhead: marginal costing & break-even analysis and standard costing methods and analysis of variance.

Unit-4: Introduction to Finance
Meaning, objectives and functions of financial management; capital structure of companies: shares, debentures and bonds; financial analysis: balance sheet and income statement; Profitability, Activity & Financial Ratios: liquidity, debt, profitability and coverage ratios; common size and index analysis.

Unit-5: Capital Budgeting
Concept and procedures of capital budgeting, cash flow analysis, methods of evaluation of projects-average return method, payback period method, internal rate of return method, net present value method, cost of capital and estimation of required rate of return.

Text and Reference Books:

Course Outcomes:

1. Demonstrate systematic recording of business transactions and accounting of sole proprietorship, partnership and limited companies. (Understand)
2. Apply proper record of assets and liability in order to view financial position of company. (Apply)
3. Ascertain correct analysis of cost per unit by different elements of cost. (Analyze)
4. Ascertain the knowledge of financial management and profitability of products and advise how to maximize the profits. (Understand, Analyze)
5. Apply the procedure of capital budgeting and cost of capital. (Apply)

PROFESSIONAL COMMUNICATION (HHS-401)

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSMC</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisite: NIL

Course Content:

Unit-1: Fundamentals of Technical Communication:
Process of communication, language as a tool of communication, levels of communication, flow of communication, barriers to communication, communication across cultures; Technical Communication: meaning, significance, characteristics, difference between technical and general communication.

Unit-2: Elements of Written Communication:
Words and phrases, word formation, synonyms and antonyms, homophones, one word substitution, sentence construction, paragraph construction,

Unit-3: Forms of Technical Communication:
(A) Business letters, job application letter and resume, business letters: sales & credit letters, letters of enquiry, letters of quotation, order, claim and adjustment letters, official letters: D.O. letters, government letters, letters to authorities, etc.

Unit-4: Presentation Strategies:
Defining the subject, Scope and purpose, analysing audience & locale, collecting materials, preparing outlines, organising the contents, visual aids, nuances of delivery, extemporaneous, manuscripts, impromptu, non-verbal strategies.

Unit-5: Value-based Text Reading:
(A) Study of the following essays from the text book with emphasis on writing skills:
 1. Man and Nature by J. Bronowski
 2. The Language of Literature and Science by Aldous Huxley
 3. The Aims of Science & the Humanities by Moody E Prior
 4. Gods in this Godless Universe by Bertrand Russell
 5. Science and Survival by Barry Commoner
(B) Readings of selected short stories:
1. The Renunciation by Rabindranath Tagore
2. The Lament by Anton P. Chekhov
3. The Barber’s Trade Union by Mulk Raj Anand
4. The Eyes Are Not Here by Ruskin Bond

Lab Work:
Interactive practical sessions with emphasis on oral presentations/ spoken communication:
1. Group Discussions: selected topical issues to be discussed in groups.
2. Mock interviews
3. Communication skills for seminars/conferences/workshops with emphasis on non-verbal skills.
4. Presentation skills for technical papers/project reports/professional reports.
5. Theme presentation/ key note presentation based on correct argumentation methodologies.
6. Argumentative skills
7. Role play
8. Comprehension skills based on reading and listening practice, asking questions.
9. Introduction to International Phonetics Alphabets
10. Audio Visual demonstration of effective communicative strategies & TED Talks

Text and Reference Books:
1. ‘Improve Your Writing’, V N Arora and Laxmi Chandra, Oxford University Press, New Delhi
10. R. K. Bansal & J.B. Harrison, Spoken English for India, Orient Longman.

Course Outcomes:
At the end of this course students should be able to:
1. Effectively communicate their ideas in the contemporary global competitive environment.
2. Convey their messages through constructive writing.
3. Draft potent E-Mails, letters, proposals and reports.
4. Present their presentations along with using all nuances of delivery with clarity and thoroughness.
5. Solve problems based on real time situations and articulate them eventually.
Prerequisite:

Course Content:

Unit-1: Fundamentals of Logic
First Order Predicate Logic: Predicates & quantifiers, Nested quantifiers, Use of quantifiers, Rules of inference, Validity of arguments and proof methods.

Unit-2: Set Theory, Relations and Functions
Set Theory: Sets & subsets, Venn diagrams, set operations and laws, countable set, Cartesian product, Cardinality, Principle of inclusion- exlusion.
Relations: Relation, Representation & properties, n-ray relations and applications, Composition of relations, Closures of relations, Equivalence relation & partitions, partial orders, compatibility relation.
Functions: Functions and its types, Inverse function, Composition of functions, Special functions, Recursively defined functions, Computational Complexity, Analysis of algorithms.

Theorem Proving Techniques: Mathematical induction (weak, strong, structural) and its applications, Proof by contradiction, Pigeonhole principle.

Unit-3: Algebraic Structures and Coding Theory
Algebraic Structures: Definition, Properties, Semi group, Monoid, Group, properties of groups, Subgroup, Cyclic group, Cosets and Lagrange’s theorem, Permutation groups, Normal subgroup, Homomorphism and isomorphism of groups, Congruence relation, Rings and Fields. Example and standard results.
Coding Theory: Elements of coding theory, Hamming matric, Parity-check and generator matrices, Coding and error detection, Group codes: decoding with coset leaders and error correction, Hamming matrices.

Unit-4: Partially Ordered Structures
Posets: Definitions, ordered set, Hasse diagram, isomorphic ordered set, well ordered set, Minimal and Maximal elements, LUB &GLB etc.
Boolean Algebra: Definitions & Properties, SOP & POS forms, Logic gates and minimization of circuits, Karnaugh maps, Quine-McClusky method.
Trees: Definition & Examples and Properties, Rooted tree, Binary tree, Tree traversal, application in computer science and engineering.

Unit-5: Combinatorics and Graph Theory
Combinatorics: Discrete numeric functions and properties, Recurrence relations and their applications (modeling), various methods of solutions, system of recurrence relations, OGF & EGF, properties, applications: solution of recurrence relations and combinatorial problems.
Graphs: Graphs and graph models, terminology, matrices associated with graphs, Isomorphism, Special types of graphs, connectedness, Euler and Hamilton graphs with their applications, trees with properties, MST, planer graphs and applications, criteria of planarity, Graph coloring and coloring models, directed graphs.

Text and Reference Books:

4. Deo, narsingh, “Graph Theory with applications to Engineering & Computer Science”, PHI.

Course Outcomes:

1. Understand concepts of Logic and various inference mechanisms using logic. (Understand)
2. Understand Set theory, functions, relations and the concepts of theorem proving. (Understand)
3. Explain algebraic structure and coding theory. (Understand)
4. Understand and apply concepts of partially ordered structures, Boolean algebra and trees in various application of computer science domain. (Understand, Apply)
5. Understand and apply graph theory and concepts of recurrence relation in system modeling. (Understand, Apply)

DATA STRUCTURE USING C (ECA-402)

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCC</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Prerequisite: Computer Concepts & Programming in ‘C’ (ECA-401)

Course Content:

Unit -1:

Introduction: Basic Terminology, Elementary Data Organization, Structure operations, Algorithm Complexity and Time-Space trade-off.

Arrays: Array Definition, Representation and Analysis, Single and Multidimensional Arrays, address calculation, application of arrays, Character String in C, Character string operation, Array as Parameters, Ordered List, Sparse Matrices and Vectors.

Unit-2:

Queues: Array and linked representation and implementation of queues, Operations on Queue: Create, Add, Delete, Full and Empty, Circular queues, D-queues and Priority Queues.

Linked list: Representation and Implementation of Singly Linked Lists, Two-way Header List, Traversing and Searching of Linked List, Overflow and Underflow, Insertion and deletion to/from
Linked Lists, Insertion and deletion Algorithms, Doubly linked list, Linked List in Array, Polynomial representation and addition, Generalized linked list, Garbage Collection and Compaction.

Unit-3:
Trees: Basic terminology, Binary Trees, Binary tree representation, algebraic Expressions, Complete Binary Tree, Extended Binary Trees, Array and Linked Representation of Binary trees, Traversing Binary trees, Threaded Binary trees, Traversing Threaded Binary trees, Huffman algorithm.

Searching and Hashing: Sequential search, binary search, comparison and analysis, Hash Table, Hash Functions, Collision Resolution Strategies, Hash Table Implementation.

Unit-4:
Sorting: Insertion Sort, Bubble Sort, Quick Sort, Two Way Merge Sort, and Heap Sort, Sorting on Different Keys, Practical consideration for Internal Sorting.

Binary Search Trees: Binary Search Tree (BST), Insertion and Deletion in BST, Complexity of Search Algorithm, Path Length, AVL Trees, B-trees.

Unit-5:

File Structures: Physical Storage Media File Organization, Organization of records into Blocks, Sequential Files, Indexing and Hashing, Primary indices, Secondary indices, B+ Tree index Files, B Tree index Files, Indexing and Hashing Comparisons.

Text and Reference Books:

Lab Work:

Write Program in C or C++ for the following

1. Array implementation of Stack, Queue, Circular Queue, List.
2. Implementation of Stack, Queue, Circular Queue, List using Dynamic memory Allocation.
3. Implementation of Tree Structures, Binary Tree, Tree Traversal, Binary Search Tree, Insertion and Deletion in BST.
5. Graph Implementation, BFS, DFS, Min. cost spanning tree, shortest path algorithm.

Course Outcomes:

1. Analyze the algorithms to determine the time and computation complexity and justify the correctness. (Analyze)
2. Implement Arrays, Stacks, Queues and linked list based problems and analyze the algorithm to determine the time complexity. (Apply, Analyze)
3. Implement search and traversal algorithms on Trees and Graphs and determine the time complexity. (Apply, Analyze)
4. Algorithms for Selection Sort, Bubble Sort, Insertion Sort, Quick Sort, Merge Sort, Heap Sort and compare their performance in term of space and time complexity. (Apply, Analyze, Evaluate)

5. Understand file structures and file handling. (Understand)

OPERATING SYSTEMS (ECA-404)

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCC</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisite:

Course Content:

Unit-1:

Unit-2:

Unit-3:

Unit-4:

Unit-5:

Text and References Books:

4. Tannenbaum, "Operating System Design and Implementation", PHI.
8. Crowley, "Operating System", TMH.
Course Outcomes:

1. Understand types and structure of operating systems. (Understand)
2. Construct solutions for problems related to process scheduling, deadlocks and synchronization in a multi-programmed operating system. (Apply)
3. Develop appropriate solutions for memory management considering challenges due to multi-programming and virtual memory. (Apply)
4. Apply knowledge of various software and hardware synchronization tools for solving critical section problem in concurrent processes. (Apply)
5. Construct solutions for problems related to secondary storage management with an understanding of file systems and disk scheduling. (Apply)
6. Design various system protection and security mechanisms in order to design efficient software system. (Apply)

COMPUTER ORIENTED NUMERICAL & STATISTICAL TECHNIQUES (BMA-402)

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSC</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisite:

Course Content:

Unit-1: Nonlinear Equations and Simultaneous Linear Equations

Unit-2: Interpolation, Differentiation and Integration

Unit-3: Numerical Solution of Ordinary Differential Equations
Initial-value problems, Single step methods; Taylor’s, Picard’s, Modified Euler’s method and Runge-Kutta method (fourth order), Error estimates, Multi-step methods: Adam’s –Bashforth and Milne’s methods, convergence and stability analysis, simultaneous and Higher equations: RK Fourth order method.

Unit-4: Curve- Fitting, Correlation, Regression and Probability
Curve-fitting, method of least- squares, fitting of straight lines, polynomials, non-linear and exponential curves etc., correlation analysis, linear, non-linear and multi- regression analysis, probability, random variables and probability distributions, expectation, moments and transform
methods, Binomial, Poisson and Normal distributions, overview of t-distribution, F-distribution and \(\chi^2 \)-distribution.

Unit-5: Statistical Methods

Sampling theory (small and large), parameter estimation, confidence intervals, tests of hypotheses and significance; z-, t-, F-, and \(\chi^2 \) tests, goodness of fit test-\(\chi^2 \) test, analysis of variance, non-parametric tests (Simple application), time series analysis, index numbers, quality control charts.

Lab Work:

Develop programs for the following techniques in C/C++ Language:
1. To implement iterative methods to solve nonlinear equations.
2. To implement iterative methods to solve a system of linear equations.
3. To implement Newton’s divided difference and Lagrange’s interpolation formulae.
4. To implement Numerical differentiation.
6. To implement single step/multi step methods to solve initial value problems.
7. To implement least squares method for curve fitting.
8. To find correlation coefficient, regression coefficients and lines of regression.
9. To implement tests of hypothesis and significance.
10. To implement non parametric tests.
11. To determine the confidence interval to implement ANOVA.

Text and Reference Books:

Course Outcomes:

1. Using Mathematical Modeling, most of the problems in Engineering, physical and Economical sciences can be formulated in terms of systems of linear or non-linear equations, ordinary or partial differential equations or integral equations. In majority of the cases, the solutions to these problems in analytical form are difficult or not amenable for direct interpretation. In all such problems, Numerical Analysis provides approximate solutions, practical and amenable for analysis. (Apply)
2. Numerical Methods provide easier computational process to solve various mathematical problems like Interpolation, Differentiation, Integration, ODE & PDE and Initial & Boundary value problems. (Apply)
3. Analytical solutions can be obtained only for selected class of ODE and PDE. For certain problems, analytical solutions cannot be obtained. However numerical solutions can be obtained to the desired degree of accuracy using computers. (Understand)
4. In many engineering problems to establish a linear, quadratic, cubic or exponential relationship between two quantities, it is required two or more unknowns in such a way that these follow whole data such situations occur in the problems of curve fitting etc. Correlation and
regression are the most commonly used techniques for investigating the relationship between two quantitative variables. The theory of probability is the study of such random phenomena which are not deterministic. In analyzing and interpreting data that involves an element of “chance” or uncertainty, probability theory plays a vital role in the theory and application of statistics. (Analyse)

5. Probability distribution is the theoretical counterpart of frequency distribution and plays an important role in the theoretical study of populations. (Understand)

6. Statistical methods are useful in engineering, medical sciences, industries, banking, and economics. These methods are used to present the data effectively, help in critical analysis of information and summarizing the large data into a simple form using the frequency distribution and graph. In many situations, assumptions are made about the population parameters involved in order to arrive at decisions related to population on the basis of sample information. Quality control and process control use statistics as a tool to manage conformance to specifications of manufacturing processes and their products. (Apply)

ORGANISATIONAL STRUCTURE & HUMAN RESOURCE MANAGEMENT (HSS-402)

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSMC 3</td>
<td>1</td>
<td>0</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisite: NIL

Course Content:

Unit-1: Basic Concept of Organization
Definition of organization and organizational structure, line and staff authority, centralization and decentralization, span of control, formal and informal organization, forms of organization- function based, product based, geography based, project based, organization design, organizational change, mechanistic and organic structure, virtual and network organization structure.

Unit-2: Introduction to Human Resource Management
Meaning, objectives and functions of human resource management, difference between HRM and Personnel Management, HRM models, duties and responsibility of HR managers, challenges & emerging trend in human resource management.

Unit-3: Human Resource Acquisition
Definition, importance and processes; job analysis- definition and processes, job enrichment and job enlargement, recruitment and selection: definition, sources of recruitment, selection processes, interview methods.
Performance Management: appraisal system, key performance indicators & factors

Unit-4: Motivation
Definition and importance, motivation and behaviour, theories of motivation: Maslow’s Need Hierarchy, Two Factor Theory, McClelland’s Need Theory, Theory X and Theory Y.

Unit-5: Training and Development
Definition, importance and nature of training, training and development, types of training, training processes, inputs of training, training for international assignment, emerging trends.

Text and Reference Books:

Course Outcomes:

1. Design, structure and frame organizations in different forms and types with a view of line and staff, centralization and its need, and span of control in formal and informal organizations.
2. Describe the role of human resource managers in the organization with emerging challenges; explain work force trends and culture and analyze their impact on HR practices in organizations.
3. Discuss the various aspects of the human resources function such as recruitment, selection and performance appraisal.
4. Feel and realize the motives and need required in human resource practices.
5. Analyze organizational need for training and apply training modules in different organizational situations.

ENVIRONMENTAL SCIENCE & ETHICS (ECE-404)

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSC</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisite: NIL

Course Content:

Unit-1:

Unit-2:
Impact of man on environment: Human population and growth, population explosion, growth, curve, migration, Societal issues related to environment: Urban Problems such as water, energy conservation, waste management, pollution, congestion, resettlement and rehabilitation, environmental ethics, Human activities, Food shelter, Economic and Social Security.

Unit-3:
Environmental Pollution and its effects, Water pollution: Quality aspects, water borne diseases, Air pollution, Current environmental issues of importance: Population growth, Climate change and Global Warming Effects, Urbanization, Automobile Pollution, Acid Rain, Ozone Layer Depletion.

Unit-4:
Natural Resources: Water Resources, Mineral resources, Forest resources, Agricultural resources, Energy resources, Environmental protection: Role of Govt., Legal aspects, environmental education, women education.

Unit-5:
Environmental legislation: Introduction of various legislation related to water, air biodiversity, ozone depletion at national and international level, Conventions and treaties, Enforcement of laws, issues
involved in effective implementation of laws, initiatives by NGOs, Global efforts in environment protection.

Text and Reference Books:

Course Outcomes:

1. Understand the need for eco-balance and ecosystem. (Understand)
2. Acquire basic knowledge about global climate change with a particular reference to the Indian context. (Understand)
3. Find ways to protect the environment from various types of pollutions and play pro-active roles. (Understand)
4. Understand the necessity and importance of natural resources and their conservation. (Understand)
5. Understand legislation for environmental protection. (Understand).
Detailed Syllabus

II Year
SOFTWARE ENGINEERING (ECA-501)

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCC</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Prerequisite:

Course Content:

Unit-1:

Unit-2:

Unit-3:

Unit-4:

Unit-5:
Lab Work:
Lab exercises or a Mini Project (as per list given below) to be carried out using languages like C++, Java, C# and tools like Visio, ARGOUNL, Rational Rose etc. Design and Implementation of an Object based application using any one of the above languages/tools is desirable.

- Hotel Automation System
- Book Shop Automation Software
- Word processing Software
- Software Component Cataloguing Software
- Payroll System
- Banking System
- Purchase Order System
- Library Management System
- Railway Reservation System
- Bill Tracking System
- University Admission System
- Estate Management System.

Text and References Books:
4. Pankaj Jalote, Software Engineering, Narosa Publication

Course Outcomes:
1. Understand and explain various concepts of software engineering and software life cycle development models. (Understand)
2. Prepare SRS and Compute cost and effort required to complete a given project, using various estimation techniques and models. (Apply)
3. Understand various concepts of Software design and Construct Data Flow Diagrams, Data Dictionaries and UML diagrams for a given software requirement specification. (Understand, Apply)
4. Understand various testing techniques and use these concepts to design optimal test cases. (Understand, Apply, Analyze)
5. Understand software configuration management, version control, reverse engineering, defect tracking etc. (Understand)
6. Build a project report as a team which contains the requirement specification, plan, schedule and design documents based on the knowledge of software development lifecycle. (Apply)
DESIGN & ANALYSIS OF ALGORITHMS (ECA-503)

Prerequisite:

Course Content:

Unit-1:

Unit-2:

Unit-3:
Advanced Design and Analysis Techniques: Dynamic Programming, Greedy Algorithms, Back Tracking, Branch and Bound with their applications.

Unit-4:

Unit-5:

Text and References Books:

1. Coreman, Rivest, Lisserson: “Algorithm", PHI.

Course Outcomes:

1. Understand and apply mathematical preliminaries to the analysis and design stages of different types of algorithms. (Understand, Apply)
2. Analyze worst-case time complexity of various algorithms using asymptotic methods. (Analyze)
3. Understand and apply the divide-and-conquer paradigm and synthesize divide-and-conquer algorithms on problems of Sorting, Searching, finding MST etc. (Understand, Apply)
4. Describe the greedy paradigm and explain when an algorithmic design situation calls for it. For a given problem develop the greedy algorithms. (Apply, Analyze)
5. Apply the dynamic-programming paradigm to model engineering problems using graph and write the corresponding algorithm to solve the problems. (Apply)
6. Explain the ways to analyze randomized and approximation algorithms (Apply, Analyze)
Prerequisite:

Course Content:

Unit-1:
Introduction: An overview of database management system, database system Vs file system, Database system concepts and architecture, data models schema and instances, data independence and database language and interfaces, Data definitions language, DML, Overall Database Structure. Data Modeling using the Entity Relationship Model: ER model concepts, notation for ER diagram, mapping constraints, keys, Concepts of Super Key, candidate key, primary key, Generalization, aggregation, reduction of an ER diagrams to tables, extended ER model, relationships of higher degree.

Unit-2:
Relational data Model and Language: Relational data model concepts, integrity constraints: entity integrity, referential integrity, Keys constraints, Domain constraints, relational algebra, relational calculus, tuple and domain calculus, Introduction to SQL: Characteristics of SQL, Advantage of SQL. SQL data types and literals, Types of SQL commands, SQL operators and their procedure, Tables, views and indexes. Queries and sub queries, Aggregate functions. Insert, update and delete operations, Joins, Unions, Intersection, Minus, Cursors in SQL.

Unit-3:
Data Base Design & Normalization: Functional dependencies, normal forms, first, second, third normal forms, BCNF, inclusion dependences, loss less join decompositions, normalization using FD, MVD, and JDs, alternative approaches to database design.

Unit-4:

Unit-5:
Concurrency Control Techniques: Concurrency control, locking Techniques for concurrency control, Time stamping protocols for concurrency control, validation based protocol, multiple granularity, Multi version schemes, Recovery with concurrent transaction.

Lab Work:

1. Write the queries for Data Definition and Data Manipulation language.
2. Write SQL queries using Logical operators (=, <, >, etc.).
3. Write SQL queries using SQL operators (Between…. AND, IN(List), Like, ISNULL and with negating expressions).
4. Write SQL query using character, number, date and group functions.
5. Write SQL queries for Relational Algebra (UNION, INTERSECT, and MINUS, etc.).
6. Write SQL queries for extracting data from more than one table (Equi-Join, Non-Equi-Join, Outer Join)
7. Write SQL queries for sub queries, nested queries.
8. Write programs by the use of PL/SQL.
9. Concepts for ROLL BACK, COMMIT & CHECK POINTS.
10. Create VIEWS, CURSORS, and TRIGGRS & write ASSERTIONS.
11. Create FORMS and REPORTS.

*Students are advised to use Developer 2000/Oracle-9i version or other latest version for above listed experiments. However depending upon the availability of software’s, students may use Power Builder /SQL SERVER. Students may also work on a Mini Project to understand the important concepts of Database.

Text and References Books:

1. Date C J, “An Introduction to Database System”, Addision Wesley

Course Outcomes:

1. Understand and Develop Entity Relationship (ER) and Relational Models for a given application. (Understand, Apply)
2. Develop and manipulate relational database using Structured Query Language and relational languages. (Apply)
3. Develop a normalized database for a given application by incorporating various constraints like integrity and value constraints. (Apply)
4. Understand and apply transaction processing concepts and convert schedules to serializable schedules. (Understand, Apply)
5. Illustrate different concurrency control mechanisms to preserve data consistency in a multi-user environment. (Apply)

E-COMMERCE (ECA-507)

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisite:

Course Content:

Unit -1

commerce issues, problems and prospects, Network Infrastructure, Network Access Equipment, Broadband telecommunication (ATM, ISDN, FRAME RELAY).

Unit-2

Unit-3

Unit-4
Encryption: Encryption techniques, Symmetric Encryption- Keys and data encryption standard, Triple encryption, Asymmetric encryption- Secret key encryption, public and private pair key encryption, Digital Signatures, Virtual Private Network.

Unit -5
Electronic Payments: Overview, The SET protocol, Payment Gateway, certificate, digital Tokens, Smart card, credit card, magnetic strip card, E-Checks, Credit/Debit card based EPS, online Banking EDI Application in business, E- Commerce Law, Forms of Agreement, Govt. policies and Agenda.

Text and Reference Books:

2. Bajaj and Nag, “E-Commerce the cutting edge of Business”, TMH

Course Outcomes:

1. Understand the E-commerce, its advantages & disadvantages and infrastructure requirements. (Understand)
2. Understand various concepts of mobile commerce (Understand)
3. Understand various issues related to web security and their limitations. (Understand)
4. Understand concepts of various encryption techniques, digital signatures and VPN (Understand)
5. Understand details of various electronic payments systems. (Understand)

INTERNET & JAVA PROGRAMMING (ECA-509)

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisite:

Course Content:

Unit-1
Introduction to Internet and Internet Services, HTML: Formatting tags, Links, Lists, Tables, Frames, Forms, Comments in HTML, DHTML
Core Java: Introduction, Operator, Data types, Variables, Arrays, Control Statements, Methods & Classes, Inheritance, Packages and Interface.
Unit-2
Core Java: Exception Handling, Multithread Programming, I/O, Applet, String handling, Networking, Event Handling, Introduction to AWT, AWT controls, Layout managers, Menus, Images, Graphics, JDBC

Unit-3
Java Servelets: Servelet Life Cycle, HTTP Servelet Class, Request Interface, Response Interface, Session Tracking (Cookies VRL)
JSP: Overview, Relation of Applet and Servelet with JSP, Scripting Element, JSP Expressions, JSP Scriplets, Predefined Variables, Creating Custom JSP Tag Libraries, Using Nested Tags, Structuring Generated Servelet in JSP Pages, Including Files and Applets in JSP Documents, Integrating Servelet and JSP.

Unit-4

Unit-5

Lab Work:
1. Design a HTML page to display your CV
2. Design a HTML form to reserve a railway ticket.
3. Write a Java Script program that finds the greatest common divisor of two numbers.
4. In the form mentioned in problem 2 to reserve a railway ticket add the following validations using java script.
 - From city and to city are two different cities.
 - Age of passengers should not be greater than 150.
 - Name of the passenger should be a string of a maximum length 20.
5. Write a program for illustrating client/server side scripting with help of ASP.
6. Write a piece of code in XML for creating DTD, which specifies set of rules.
7. Create style sheet in CSS/XSL and display the document in Internet Explorer.

Text and Reference Books:
1. Margaret Levine Young, “The Complete Reference Internet”, TMH
3. Balagurusamy E, “Programming in JAVA”, TMH
4. Dustin R. Callway, “Inside Servlets”, Addison Wesley

Course Outcomes
1. Understand internet and its services and features of core Java. (Understand)
2. Understand and apply Java Servelets and JSP for design of applications. (Understand, Apply)
3. Explain the concept of Java Swing and create applications using Swing Applet, Panes, Pluggable Look and Feel etc. (Understand, Apply)
4. Understand and develop applications using EJB and RMI concepts. (Understand, Apply)
OBJECT ORIENTED SYSTEM MODELING (ECA-502)

Type L T P Credits
PCC 3 1 2 5

Prerequisite:

Course Content:

Unit-1:

Unit-2:
Basic Structural Modeling: Classes, Relationships, common Mechanisms, and diagrams. Class & Object Diagrams: Terms, concepts, modeling techniques for Class & Object Diagrams, Links and Associations, Link Attributes and Link Classes, Generalization and Inheritance, Aggregation and Composition, Qualified Association, Handling multiplicity in Object creation, Abstract Classes, Specifying constraints in Class Diagrams, Advanced Structural Modeling: Advanced classes, advanced relationships, Interfaces, Types and Roles, Packages, Use Case Modeling: Use Cases and Use Case Diagrams, Use Case driven Methodology.

Unit-3:

Unit-4:
Java Programming: Introduction to Java Programming, Operator, Data type, Variable, Arrays, Control Statements, Methods & Classes, Inheritance, Package and Interface, Exception Handling, Multithread programming, I/O, Java Applet, String handling, Networking, Event handling.

Unit-5:
Introduction to Advance Java Programming: Demonstration of concepts through example programs for AWT, Java Swing, Java Beans, Java Servlets, JSP, Modern Object Technologies and Web Services.

Lab Work:

1. Write a program in Java, to implements the Stack data Structure.
2. Write a program in Java to implement a simple Bank Account.
3. Write a program in Java showing the action from three threads using a suitable example.
4. Write a program of threads in Java showing inter leaving of actions from two threads: t1 & t2 synchronizing on a shared object. Let t1 print message Ping → and t2 prints message ← Pong. Take as command line arguments the following inputs to the program:
 Sleep interval for thread t1
 Sleep interval for thread t2
 Messages per cycle
 Number of Cycles
5. Write a program in Java which converts a text file into all capital letters.
6. Write a program to create a sequential file that could store details about five products. Details include product code, cost, no. of items available and number of items available and are provided through keyboard.

7. Create a Person class with private instance variables for Person’s name and birth date. Add appropriate accessor methods to access the variables. Then create a subclass CollegeGraduate with private instance variables for the student’s GPA and year of graduation and appropriate accessors for these variables. Don’t forget to include appropriate constructors for your classes. Then create a class with a main() method that manages your classes.

8. Develop an applet that receives three numeric values from the user and displays the largest of the three on the screen. Write a HTML page that embeds this applet.

9. Write an applet which draws a human face with ovals and arcs.

10. Write servlets that accepts user preferences (color, hobby etc.) from user, saves it as cookie on user machine and reads the cookie from the user machine.

11. Write an AWT application with checkbox such that all cable TV channels will be displayed from the selected category.

12. Create a simple Swing based applet that displays two buttons. Each time a button is clicked, a message is displayed that states which button was clicked.

13. Create JSP code that uses a persistent cookie (i.e. a cookie with an expiration date in the future) to keep track of how many times the client computer has visited the page. Use setMaxAge method to remain on the client’s computer for one month. Display the number of page hits (i.e. cookie’s value) every time the page loads.

14. Write JSP program that asks user his favourite color as request parameter and sets it as the background color of the page or sets the background color white if the parameter value is null.

15. Write a program in Java to show the mouse click event. The program should change the background colour of window randomly at each mouse click.

Text and Reference Books:

1. Balagurusamy E, “Programming in JAVA”, TMH

Course Outcomes:

1. Analyse information systems in real-world settings and use an object-oriented method for analysis and design. (Analyse)
2. Understand features of object-oriented design such as encapsulation, polymorphism, inheritance, and UML. (Understand)
3. Understand and prepare different types of UML diagrams like use case diagrams, interaction diagrams, nested state diagrams, state chart diagrams, activity diagram etc. (Understand, Apply)
4. Understand and appreciate the use of Design Patterns in the Software Development. (Understand, Apply)
5. Understand the core and advance Java Programming features and apply them in complex problem solving. (Understand, Apply)

COMPUTER GRAPHICS & ANIMATION (ECA-504)

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisite: NIL

Course Content:

Unit-1:

Unit-2:
2-D Viewing and Clipping: Point Clipping, Line Clipping, Cohen-Sutherland Line Clippings, Cyrus-Beck Line Clipping Algorithm, Polygon Clipping: Sutherland Hodgman Algorithm, Polygon: Polygon Representation, Entering polygons, Filling polygons, Segments: Segments table, Creating deleting and renaming segments, Visibility.

Unit-3:
2-D and 3-D Transformations: Basic Transformations: Translation, Rotation, Scaling, Shear, Composite Transformations: Rotations about a point, Reflection about a line, Homogeneous Coordinate Systems, 3-D Transformations, 3-D geometry primitives, Viewing Transformation, Projections: Parallel Projection, Orthographic & Oblique Projections, Perspective Projections. Interaction: Hardware input devices handling algorithms, Event handling echoing, Interactive techniques.

Unit-4:
Hidden Line and Surface: Back face removal algorithms, hidden line methods, Rendering and Illumination: Introduction to curve and Surfaces generation, Bezier, Hermite and B-spline algorithms and their comparisons.

Unit-5:

Text and Reference Books:

Lab Work:

Write Program in C or C++ for the following.
1. Implementation of line generation using slope’s method, DDA and Bresenham’s algorithms.
2. Implementation of circle generation using Mid-point method and Bresenham’s algorithm.
3. Implementation of ellipse generation using Mid-point method.
4. Implementation of polygon filling using Flood-fill, Boundary-fill and Scan-line algorithms.
5. Implementation of 2-D transformation: Translation, Scaling, Rotation, Mirror Reflection and Shearing (write a menu driven program).
7. Implementation of Polygon Clipping using Sutherland-Hodgman algorithm.
8. Implementation of 3-D geometric transformations: Translation, Scaling and rotation.
10. Implementation of Curve generation using B-spline and Bezier curves.

Course Outcomes:

1. Understand and use various mathematical concepts and supporting composite 2-D & 3-D graphics transformations for hidden surface detection/ removal and various graphical algorithms. (Understand, Apply)
2. Design algorithms for various graphics shapes like ellipse, hyperbola, triangle etc. (Apply)
3. Use of various graphical tools and software in 3D Graphics API (e.g. OpenGL or DirectX). (Apply)
4. Understand and apply geometrical transformation and computer graphics in multidisciplinary field of engineering. (Apply)
5. Understand the hardware system architecture for computer graphics - graphics pipeline, frame buffers, and graphic accelerators/co-processors. (Understand)
6. Analyze and implement interactive graphics applications using programming language and graphics application programming interfaces. (Apply, Analyze)

ARTIFICIAL INTELLIGENCE (ECA-506)

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Prerequisite: Discrete Structures (BMA-401)

Course Content:

Unit-1:
Introduction to Artificial Intelligence, Brief history, Various approaches to AI, Areas of application, Simulation of sophisticated & Intelligent Behavior in different area, Problem solving in games, natural language processing, automated reasoning, and visual perception, Knowledge and its role in AI, Heuristic algorithm versus solution guaranteed algorithms, Introduction to soft computing.

Unit-2:
Representing problems in state space, Informed versus uninformed search, Production System Model, Evaluation of the Production System, Depth First Search and Breadth First Search, Heuristics, Heuristic Search Techniques: Hill Climbing, Best First search, A* Algorithm, Branch and Bound,
Cryptarithmetic Problem, Means End Analysis, AO* Algorithm, Game Playing: MINMAX Search, Alpha-Beta Pruning, Heuristic Estimation.

Unit-3:

Unit-4:
Understanding Natural Languages, Various Approaches of NLP, Parsing techniques, Context free and transformational grammars, Transition nets, Augmented transition nets, Fillmore's grammars, Grammar free analyzers, Sentence generation, and translation, Introduction to Pattern Recognition, Structured Description, Symbolic Description, Machine Perception, Object Identification, Speech Recognition.

Unit-5:

Text and References Books:

7. Liyoyed, “Foundation of Logic Processing”, Springer Verlag
8. D. W. Patterson, “Introduction to Artificial Intelligence and Expert Systems”, PHI.

Course Outcomes:

1. Understand different types of AI agents (Understand).
2. Understand and apply various AI search algorithms (uninformed, informed, heuristic, constraint satisfaction, genetic algorithms) (Understand, Apply).
3. Understand the fundamentals of knowledge representation, reasoning, and machine learning techniques and apply them to real world problems. (Understand, Apply)
4. Know how to build simple knowledge based systems using languages like LISP, Prolog, and AI tools like JESS. (Apply)
5. Carry out independent (or in a small group) research and communicate it effectively in a seminar. (Apply, Analyze)
COMPUTER NETWORKS (ECA-508)

Type L T P Credits
PCC 3 1 0 5

Prerequisite:

Course Content:

Unit-1:

Unit-2:

Unit-3:

Unit-4:

Unit-5:
Application Layer: Application Layer: File Transfer, Access and Management, Electronic mail, Virtual Terminals, Other application, Example Networks - Internet and Public Networks.

Text and References Books:

1. Forouzen, "Data Communication and Networking", TMH

Course Outcomes:

1. Explain the functions of the different layer of the OSI Protocol. (Understand)
2. Design of wide-area networks (WANs), local area networks (LANs) and Wireless LANs (WLANs) based on available network devices. (Apply, Analyze)
3. Develop network programing application for a given problem related to TCP/IP protocol stack. (Apply, Analyse)
4. Understand and analyze different routing algorithms. (Understand, Analyze)
5. Understand the use of IP addressing schemes as per IPV4 and IPV6. (Understand)
ELECTIVE-I
(Any one of the following four courses)

COMPILER DESIGN (ECA-512)

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEC</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisite: NIL

Course Content:

Unit-1:
Introduction to Compiler, Phases and passes, Bootstrapping, Finite automata & regular expressions and their applications to lexical analysis, Implementation of lexical analyzers, lexical-analyzer generator, LEX-compiler, The syntactic specification of Programming languages: Context free grammars, derivation and parse trees, capabilities of CFG, Application of grammars in syntax analysis, ambiguity and BNF notation, YACC.

Unit-2:
Basic Parsing Techniques: Parsers, top down parsing, Shift reduces parsing, operator precedence parsing, predictive parsers. Automatic Construction of efficient Parsers: LR parsers, the canonical Collection of LR(0) items, constructing SLR parsing tables, constructing Canonical LR parsing tables, Constructing LALR parsing tables, using ambiguous grammars, an automatic parser generator, implementation of LR parsing tables, constructing LALR sets of items.

Unit-3:
Syntax-directed Translation: Syntax-directed Translation schemes, Implementation of Syntax directed Translators, Intermediate code, postfix notation, Parse trees & syntax trees, three address code, quadruple & triples, translation of assignment statements, Boolean expressions, statements that alter the flow of control, postfix translation, translation with a top down parser. More about translation: Array references in arithmetic expressions, procedures call, declarations, Case statements.

Unit-4:

Unit-5:
Introduction to code optimization: Loop optimization, the DAG representation of basic blocks, value numbers and algebraic laws, Global Data-Flow analysis.

Text and References Books:

Course Outcomes:

1. Describe the role of each phase of a compiler with its construction tools. (Understand)
2. Develop a Lexical Analyzer for recognizing tokens of a given language with an understanding of symbol table management and error handling. (Apply)
3. Construct top-down, bottom-up, operator precedence and SLR parsers with an understanding of Context Free Grammars and syntax analysis. (Apply)
4. Design and develop semantic analyzers for type-checking and intermediate code generators to translate the source program into an intermediate code. (Apply)
5. Construct code optimizers to optimize the target code generated. (Apply)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Prerequisite</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECA-514</td>
<td>SIMULATION AND MODELLING</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisite:

Course Content:

Unit-1
System definition and components, stochastic activities, continuous and discrete Systems, System modeling, types of models, static and dynamic physical models, Static and dynamic mathematical models, Full corporate model, types of system study.

Unit-2
System simulation, Why to simulate and when to simulate, Basic nature of simulation, technique of simulation, comparison of simulation and analytical methods, types of system simulation, real time simulation, hybrid simulation, simulation of pure-pursuit problem single-server queuing system and an inventory problem, Monte Carlo simulation, Distributed Lag models, Cobweb model.

Unit-3
Simulation of continuous systems, analog vs. digital simulation, simulation of water reservoir system, simulation of a servo system, simulation of an autopilot Discrete system Simulation, Fixed time-step vs. event-to-event model, generation of random numbers, Test for randomness, Generalization of non-uniformly distributed random numbers, Monte-Carlo computation vs. stochastic simulation.

Unit-4
System dynamics, exponential growth models, exponential decay models, modified exponential growth models, logistic curves, generalization of growth models, System Dynamics diagrams, Feedback in Socio-Economic systems, world model.

Unit-5
Simulation of PERT networks, Critical path computation, uncertainties in Activity duration, Resource allocation and consideration. Simulation software, Simulation languages, continuous and discrete simulation languages, Expression based languages, object-oriented simulation, general-purpose vs. application-oriented simulation packages, CSMP-III, MODSIM-III.

Text and Reference Books:

2. Narsingh Deo, “System Simulation with digital computer”, PHI

Course Outcomes:

1. Understand the modeling process and various types of modeling techniques (Understand)
2. Understand various advantages of modeling & simulation over the actual experimentation analytical and experimentation techniques. (Understand)
3. Study various types of simulation techniques and understand their relative advantages and disadvantages. (Understand)
4. Understand and analyze the system dynamics with specific reference to various types of growth models. (Understand, Analyze)
5. Understand and use optimization techniques like PERT/CPM and various modeling & simulation tools. (Understand, Apply)

INFORMATION SECURITY & CYBER LAWS (ECA-516)

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEC</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisite:

Course Content:

Unit-1:
Introduction to information systems, Types of information systems, Development of Information systems, Introduction to information security, Need for Information security, Threats of Information Systems, Information Assurance, Cyber Security and Security Risk Analysis.

Unit-2
Application security (Database, E-mail and Internet), Data Security Considerations - Backups, Archival Storage and Disposal of Data, Security Technology - Firewall and VPNs, Intrusion Detection, Access Control, Security Threats - Viruses, Worms, Trojan Horse, Bombs, Trapdoors, Spoofs, E-mail viruses, Macro viruses, Malicious Software, Network and Denial of Services Attack, Security Threats to E-Commerce – Electronic Payment System, e-Cash, Credit/Debit Cards, Digital Signature, public Key Cryptography.

Unit-3

Unit-4

Unit-5

Text and Reference Books:

3. Dr Surya Prakash Tripathi, Ritendra Goyal, and Praveen Kumar Shukla, "Introduction to Information Security and Cyber Law", Willey Dreamtech Press.

Course Outcomes:

1. Understand information, information systems, information security, Cyber Security and Security Risk Analysis. (Understand)
2. Understand and apply application security, data security, security technology, security threats from malicious software. (Understand, Apply)
3. Understand the concepts of security threats to e-commerce applications such as electronic payment system, e-Cash, Credit/Debit Cards etc. (Understand)
5. Understand various types of Security Policies, Cyber Ethics, IT Act, IPR and Cyber Laws in India. (Understand)

INTERNET OF THINGS (ECA-518)

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEC</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisite: Computer Network (ECS-302)

Course Content:

Unit-1: Introduction

Unit-2: Fundamentals of IoT Mechanisms and Key Technologies
Identification of IoT Objects and Services, Structural Aspects of the IoT, Environment Characteristics, Traffic Characteristics, Scalability, Interoperability, Security and Privacy, Open Architecture, Key IoT Technologies, Device Intelligence, Communication Capabilities, Mobility Support, Device Power, Sensor Technology, RFID Technology, Satellite Technology,

Unit-3: Radio Frequency Identification Technology

Unit-4: Resource Management in the Internet of Things
Unit-5: Internet of Things Privacy, Security and Governance

Text and Reference Books:

Course Outcomes:

1. Understand framework and architecture of Internet of Things. (Understand)
2. Understand key technologies in Internet of Things. (Understand)
3. Explain wireless sensor network architecture and its framework along with WSN applications. (Understand)
4. Explain resource management in the Internet of Things. (Understand)
5. Understand Security measures and design applications based on Internet of Things. (Understand, Apply)
Detailed Syllabus

III Year
SOFTWARE PROJECT MANAGEMENT (ECA-601)

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisite:

Course Content:

Unit-1:

Unit-2:

Unit-3:
Project Monitoring and Control: Dimensions of Project Monitoring & Control, Earned Value Analysis, Earned Value Indicators: Budgeted Cost for Work Scheduled (BCWS), Cost Variance (CV), Schedule Variance (SV), Cost Performance Index (CPI), Schedule Performance Index (SPI), Interpretation of Earned Value Indicators.

Unit-4:

Unit-5:

Text and References Books:

Course Outcomes:

1. Understand various concepts of Software Project Planning and Management. (Understand)
2. Understand various techniques of Human Resource Organization and Develop schedule of software projects using PERT/CPM. (Understand, Apply)
3. Understand cost benefit analysis, risk management and techniques of monitoring & control of software projects. (Understand)
4. Use concepts of software quality assurance in the development of software projects. (Apply)
5. Assess the project to develop the scope of work, provide accurate size, cost, time and effort estimates for software projects. (Apply, Analyze)

DATA WAREHOUSING & DATA MINING (ECA-603)

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCC</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisite: Database Management Systems (ECS-303)

Course Content:

Unit-1:
Overview, Motivation (for Data Mining). Data Mining—Definition & Functionalities, Data Processing, Form of Data Preprocessing, Data Cleaning: Missing Values, Noisy Data, Binning, Clustering, Regression, Computer and Human inspection, Inconsistent Data, Data Integration and Transformation. **Data Reduction**: Data Cube Aggregation, Dimensionality reduction, Data Compression, Numerosity Reduction, Clustering, Discretization and Concept hierarchy generation.

Unit-2:
Concept Description: Definition, Data Generalization, Analytical Characterization, Analysis of attribute relevance, Mining Class comparisons, Statistical measures in large Databases. Measuring Central Tendency, Measuring Dispersion of Data, Graph Displays of Basic Statistical class Description, Mining Association Rules in Large Databases, Association rule mining, mining Single-Dimensional Boolean Association rules from Transactional Databases: Apriori Algorithm, Mining Multilevel Association rules from Transaction Databases and Mining Multi-Dimensional Association rules from Relational Databases.

Unit-3:
Classification and Predictions:
What is Classification & Prediction, Issues regarding Classification and prediction, Decision tree, Bayesian Classification, Classification by Back propagation, Multilayer feed-forward Neural Network, Back propagation Algorithm, Classification methods K-nearest neighbor classifiers, Genetic Algorithm.

Cluster Analysis:

Unit-4:
Data Warehousing: Overview, Definition, Delivery Process, Difference between Database System and Data Warehouse, Multi-Dimensional Data Model, Data Cubes, Stars, Snow Flakes, Fact Constellations, Concept hierarchy, Process Architecture, 3-Tier Architecture, Data Mart.

Unit-5:
Aggregation, Historical information, Query Facility, OLAP function and Tools, OLAP Servers, ROLAP, MOLAP, HOLAP, Data Mining interface, Security, Backup and Recovery, Tuning Data Warehouse, Testing Data Warehouse.
Lab Work:

1. Build Data Warehouse and Explore WEKA
2. Perform data preprocessing tasks and Demonstrate performing association rule mining on data sets.
3. Demonstrate performing classification on data sets.
4. Demonstrate performing clustering on data sets.
5. Demonstrate performing Regression on data sets.
6. Credit Risk Assessment. Sample Programs using German Credit Data
7. Sample Programs using Hospital Management System.
8. Simple Project on Data Preprocessing.

Text and Reference Books:

1. M. H. Dunham, "Data Mining: Introductory and Advanced Topics", Pearson Education
2. Jiawei Han, Micheline Kamber, "Data Mining Concepts & Techniques", Elsevier

Course Outcomes:

1. Understand importance of abstraction of Knowledge from unstructured sources at sufficient level. (Understand)
2. Use of high level operational skills and real world case studies for knowledge discovery and data warehousing based principles. (Apply)
3. Understand the areas of probability, statistics and machine learning algorithms which underpin the knowledge discovery enterprise. (Understand)
4. Design data mining and data warehousing systems and solutions to meet user requirements and specifications. (Apply, Analyze)
5. Compare and contrast OLAP and data mining as techniques for extracting knowledge from a data warehouse. (Evaluate)

MOBILE COMPUTING (ECA-605)

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEC</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisite: Computer Networks (ECA-508)

Course Content:

Unit-1:
Unit-2:

Unit-3:
Mobile Transport Layer: Traditional TCP, Indirect TCP, Snooping TCP, Mobile TCP, Fast retransmit/fast recovery, Transmission /time-out freezing, Selective retransmission, Transaction oriented TCP.

Unit-4:
Database Issues: Hoarding techniques, caching invalidation mechanisms, client server computing with adaptation, power-aware and context-aware computing, transactional models, query processing, recovery, and quality of service issues. Data Dissemination: Communications asymmetry, classification of new data delivery mechanisms, push-based mechanisms, pull-based mechanisms, hybrid mechanisms, selective tuning (indexing) techniques.

Unit-5:
Mobile Ad hoc Networks (MANETs): Overview, Properties of a MANET, spectrum of MANET applications, routing and various routing algorithms, security in MANETs. Protocols and Tools: Wireless Application Protocol-WAP, (Introduction, protocol architecture, and treatment of protocols of all layers), Bluetooth (User scenarios, physical layer, MAC layer, networking, security, link management) and J2ME.

Text and References Books:

Course Outcomes:

1. Understand and apply the knowledge of working, characteristics and limitations of mobile hardware devices including their user-interface modalities. (Understand)
2. Understand the GSM, GPRS, CDMA and Bluetooth software models for mobile computing. (Understand)
3. Identify the root causes of call dropping, and concept of call forwarding in roaming. (Understand)
4. Understand the impact of mobile communication on society either economic or health related issues. (Understand)
5. Apply the techniques to configure adhoc network for various real time applications. (Apply)
ELECTIVE-II
(Any one of the following four courses)

CLOUD COMPUTING (ECA-611)

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEC</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisite: NIL

Course Content:

Unit-1

Unit-2
Cloud Computing Models including Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), Software-as-a-Service (SaaS), virtualization, security and privacy issues, performance and systems issues, capacity planning, disaster recovery, Public cloud, private cloud and hybrid clouds.

Unit-3
Cloud OS, Cloud architectures including federated clouds, challenges in implementing clouds, data centers, hypervisor CPU and memory management, Scalability, Performance, and QoS.

Unit-4
Cloud hosted applications, Data centers for Cloud Computing, Principles of Virtualization platforms and other advanced and research topics in cloud computing.

Unit-5
Security and Privacy issues in the Cloud, VM Ware ESX Memory Management, Capacity Planning and Disaster Recovery in Cloud Computing.

Text and Reference Books:

2. Technical papers from major journals and major conferences on computing, networking, cloud computing.

Course Outcomes

1. Understand various basic concepts related to cloud computing technologies. (Understand)
2. Understand the architecture and concept of different cloud models: IaaS, PaaS, SaaS. (Understand)
3. Apply the underlying principle of cloud virtualization, cloud storage, data management and data visualization. (Apply)
4. Use different cloud programming platforms and tools. (Apply)
5. Design and deploy cloud application using cloud platforms (Analyze)
MACHINE LEARNING (ECA-613)

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEC</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisite: NIL

Course Content:

Unit-1: Introduction to Machine Learning

Unit-2: Classification and Regression

Unit-3: Linear Models

Unit-4: Logic Based and Algebraic Models

Unit-5: Probabilistic Models

Trends in Machine Learning: Model and Symbols- Bagging and Boosting, Multitask learning, Online learning and Sequence Prediction, Data Streams and Active Learning, Deep Learning, Reinforcement Learning.

Text and Reference Books:

Course Outcomes:

1. Understand Machine learning and Machine Learning Models. (Understand)
2. Apply various classification and regression techniques and assess their performance. (Apply)
3. Apply various clustering algorithms for the problems to be solved with machine learning. (Apply)
4. Assessment of various machine learning models. (Analyze)
5. Understand probabilistic learning models and trends in machine learning. (Understand)

DIGITAL IMAGE PROCESSING (ECA-615)

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEC</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisite:

Course Content:

Unit-1:

Unit-2:
Image Enhancement in Frequency Domain Fourier Transform and the Frequency Domain, Basis of Filtering in Frequency Domain, Filters – Low-pass, High-pass; Correspondence Between Filtering in Spatial and Frequency Domain; Smoothing Frequency Domain Filters–Gaussian Lowpass Filters; Sharpening Frequency Domain Filters – Gaussian Highpass Filters; Homomorphic Filtering. Image Restoration A Model of Restoration Process, Noise Models, Restoration in the presence of Noise only Spatial Filtering – Mean Filters: Arithmetic Mean filter, Geometric Mean Filter, Order Statistic Filters – Median Filter, Max and Min filters; Periodic Noise Reduction by Frequency Domain Filtering–Bandpass Filters; Minimum Mean-square Error Restoration.

Unit-3:

Unit-4:

Unit-5:
Feature Extraction Representation, Topological Attributes, Geometric Attributes Description Boundary-based Description, Region-based Description, Relationship, Object Recognition Deterministic Methods, Clustering, Statistical Classification, Syntactic Recognition, Tree Search, Graph Matching.
Text and Reference Books:

2. Digital Image Processing and Computer Vision, R.J. Schalkoff Published by: John Wiley and Sons, NY.

Course Outcomes:

1. Apply sampling and quantization techniques for conversion of an analog image into digital form. (Apply)
2. Enhance the image using various types of filtering, segmentation and edge detection techniques. (Apply)
3. Analyze and interpret the effects of high pass and low pass filter in an image. (Analyse)
4. Restore the image in the presence of noise by using modern restoration software. (Apply)
5. Use the techniques of morphological image processing, image registration and image recognition. (Apply)
6. Apply various tools and techniques in multidisciplinary engineering and medical fields like embedded programming, CAD, web applications, MRI, CT-Scan, Angiography etc. (Apply)

BIG DATA ANALYTICS (ECA-617)

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEC</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisite: NIL

Course Content:

Unit-1: Introduction
Introduction– Big Data: Issues and Challenges, Traditional Business Intelligence (BI) versus Big Data, Distributed file system–Big Data and its importance, Four Vs, Drivers for Big data, Big data analytics, Big data applications, Introduction to Data Science.

Unit-2: Introduction to Hadoop and Hadoop Architecture
Big Data – Apache Hadoop & Hadoop EcoSystem, Moving Data in and out of Hadoop – Understanding inputs and outputs of MapReduce, Data Serialization.

Unit-3: HDFS, HIVE AND HIVEQL, HBASE
HDFS-Overview, Installation and Shell, Java API; Hive Architecture and Installation, Comparison with Traditional Database, HiveQL Querying Data, Sorting And Aggregating, Map Reduce Scripts, Joins & Sub queries, HBase concepts, Advanced Usage, Schema Design, Advance Indexing, PIG, Zookeeper , how it helps in monitoring a cluster, HBase uses Zookeeper and how to Build Applications with Zookeeper.

Unit-4: SPARK
Introduction to Data Analysis with Spark, Natural Language Processing with SPARK 2.0. Downloading Spark and Getting Started, Programming with RDDs, Machine Learning with MLlib.

NoSQL
What is it? Where It is Used Types of NoSQL databases, Why NoSQL?, Advantages of NoSQL, Use of NoSQL in Industry, SQL vs NoSQL, NewSQL
Unit-5: Data Base for the Modern Web
Introduction to MongoDB key features, Core Server tools, MongoDB through the JavaScript’s Shell, Creating and Querying through Indexes, Document-Oriented, principles of schema design, Constructing queries on Databases, collections and Documents, MongoDB Query Language.

Text and References Books:
1. Radha Shankarmani, M. Vijayalakshmi, Big Data Analytics; Wiley.

Course Outcomes:
1. Appreciate the need for Big Data with reference to Google Search, You Tube, Facebook etc. (Understand)
2. Understand concepts of Big Data, Business Intelligence, and Data Science. (Understand)
3. Understand Hadoop, Hadoop Architecture, and Data Serialization (Understand)
4. Apply Big Data analysis in Web applications. (Apply)
5. Use NoSQL and SPARK for Big Data analysis. (Apply)

ELECTIVE-III
(Any one of the following four courses)

ADVANCE DATABASE MANAGEMENT SYSTEMS (ECA-631)

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEC</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisite: Database Management Systems (ECA-505)

Course Content:

Unit-1

Unit-2
Extended Relational Model & Object Oriented Database System: New Data Types, User Defined Abstract Data Types, Structured Types, Object Identity, Containment, Class Hierarchy, Logic Based Data Model, Data Log, Nested Relational Model and Expert Database System.

Unit-3
Distributed Database System:
Structure of Distributed Database, Data Fragmentation, Data Model, Query Processing, Semi Join, Parallel & Pipeline Join, Distributed Query Processing in R* System, Concurrency Control in Distributed Database System, Recovery in Distributed Database System, Distributed Deadlock Detection and Resolution, Commit Protocols.
Unit-4
Enhanced Data Model For Advanced Applications:

Unit-5
Introduction to Expert Database and Fuzzy Database System:
Fuzzy Databases: Fuzzy Set & Fuzzy Logic, Use of Fuzzy Techniques to Define Inexact and Incomplete Databases.

Text and Reference Books:
1. Majumdar & Bhattacharya, “Database Management System”, TMH.

Course Outcomes:
1. Understand the concepts and algorithms for Query Processing, Optimization & Database Tuning. (Understand)
2. Understand the Extended Relational Model & Object Oriented Database System. (Understand)
3. Explain the Structure of Distributed Database, Query Processing, Concurrency Control, Prevention and recovery from deadlock. (Understand)
4. Understand and analyze Enhanced Data Model for Advanced Applications including Issues in Real Time Database Design. (Understand, Analyze)
5. Understand the concept of Fuzzy logic and development of Fuzzy Database Systems. (Understand)

SOFTWARE QUALITY ENGINEERING (ECA-633)

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEC</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisite: Software Engineering (ECA-501)

Course Content:

Unit-1:
Unit-2:

Unit-3:

Unit-4:

Unit-5:

Text and References Books:

Course Outcomes:
1. Understand the concept of quality, quality attribute, quality metrics and software technical reviews. (Understand)
2. Understand and discuss the needs for software quality assessment models and apply professional practices in the development of quality software. (Understand, Apply)
3. Understand and apply Software Quality Management Models in the development of software. (Understand, Apply)
4. Understand the concept of software quality assurance and use software quality standards in the development of software. (Understand)
5. Apply the concepts of software verification & validation, error tracking to enforce quality into the software. (Apply)
Cryptography & Network Security (ECA-635)

Course Content:

Unit-1:
Introduction to security attacks, services and mechanism, introduction to cryptography. Conventional Encryption: Conventional encryption model, classical encryption techniques substitution ciphers and transposition ciphers, cryptanalysis, stereography, stream and block ciphers. Modern Block Ciphers: Block ciphers principals, Shannon’s theory of confusion and diffusion, fiestal structure, data encryption standard (DES), strength of DES, differential and linear crypt analysis of DES, block cipher modes of operations, triple DES, IDEA encryption and decryption, strength of IDEA, confidentiality using conventional encryption, traffic confidentiality, key distribution, random number generation.

Unit-2:
Introduction to graph, ring and field, prime and relative prime numbers, modular arithmetic, Fermat’s and Euler’s theorem, primality testing, Euclid’s Algorithm, Chinese Remainder theorem, discrete logarithms. Principals of public key crypto systems, RSA algorithm, security of RSA, key management, Diffie-Hellman key exchange algorithm, introductory idea of Elliptic curve cryptography, Elganel encryption.

Unit-3:

Unit-4:
Authentication Applications: Kerberos and X.509, directory authentication service, electronic mail security-pretty good privacy (PGP), S/MIME.

Unit-5:

Text and References Books:

Course Outcomes:

1. Understand and deploy cryptographic techniques to secure data in networks. (Understand, Apply)
2. Analyze the vulnerabilities in any computing system and design a security solution. (Apply, Analyse)
3. Understand and use standard algorithms for confidentiality, integrity and authenticity. (Understand, Apply)
4. Apply various key distribution and management schemes in network system. (Apply)
5. Apply security protocols in various IT applications. (Apply)

SOFT COMPUTING (ECA-637)

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEC</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisite: Artificial Intelligence (ECA-506)

Course Content:

Unit 1: Introduction to Intelligent Systems and Soft Computing

Unit 2: Neuro Computing - Supervised Learning

Unit 3: Neuro Computing - Unsupervised Learning
Hebb’s learning rule for competitive learning, Kohonen’s self-organizing map and network topology, applications of SOM, Hopfield network and its topology, Boltzman Machines, Adaptive Resonance Theory.

Unit 4: Fuzzy Logic and Fuzzy Systems

Unit 5: Evolutionary Computing

Text and Reference Books:

Course Outcomes:

1. Understand differential behavior of Human and Intelligent Systems. (Understand)
2. Understand and use supervised and un-supervised learning techniques in ANN. (Understand)
3. Understand and apply different soft computing techniques like Genetic Algorithms, Fuzzy Logic, Neural Network and their combination. (Understand, Apply)
4. Correlate human-like processing in problem solving with current technologies in various domains like Bio Informatics, Multimedia Systems, Big Data Analytics, etc.
5. Apply evolutionary computing techniques in real life problems. (Apply)

\[\text{PROJECT (ECA-698)}\]

<table>
<thead>
<tr>
<th>Type</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>20</td>
</tr>
</tbody>
</table>

Prerequisite:

Course Content:

The practical implementation of theoretical knowledge gained during the study from first to fifth semester. Students are required to implement their original ideas, modification/enhancement of the existing engineering techniques, real time industrial problems, and current applications of their courses of study. Projects work can be of two types: Projects based on implementation of any application oriented problem which will be more or less experimental in nature and the others will be based on some innovative/ theoretical work.

The project work will be invariably carried out in the industry where students will work on an industrial application/problem under the guidance and supervision of some industry practitioner for the entire 6th semester. However, students will be required to present their work before faculty members of the department or mid semester assessment and finally before the external examiner at the end of the semester. Those students who do not get the industrial project due to any reason may be permitted to work on some computer application under the supervision of some faculty member of the department in the department/university itself.

Course Outcomes:

1. Show preparedness to work independently on real time problem scenarios to be addressed using knowledge of fundamentals, techniques, programming languages and tools in the area of Computer Science & Engineering. (Analyze, Create)
2. Use the innovative ideas and thoughts to address real life issues and provide efficient solutions for process oriented works.